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1. Introduction 

We appreciate Pujol-Solà et al. (2022) for their important comments 
and the opportunity to further discuss the formation of podiform chro-
mite deposit in the Moa-Baracoa Ophiolitic Massif (MBOM). The com-
ments mainly include two points of discussion about our paper (Rui 
et al., 2022a). They question (1) definition of a new type of Ti-poor high- 
Al chromitite, and (2) proposal of ultrahigh-pressure (UHP) Cr-spinel in 
the studied chromitites. Our reply is given below. 

2. Ti-poor high-Al chromitite 

The Cayo Guam deposit is not a single chromite orebody. As Rui et al. 
(2022a) described in text and shown in Fig. 1c and d, the Cayo Guam 
chromite deposit “contains dozens of orebodies”. The term “Ti-poor 
high-Al” was used to describe the chemical features of studied Cayo 
Guam chromitites of the MBOM (Rui et al., 2022a). We all agreed that 
our samples could not reflect all chemical and structural characteristics 
of a large number of MBOM chromitites. In fact, Ti-rich chromitites 
containing Cr-spinel with TiO2 contents up to 0.5 wt% (our unpublished 
data) are also observed in the Cayo Guam chromitites. However, these 
samples are closely contacted with gabbro dykes in the field. Most Cr- 
spinel grains from these Ti-rich chromitites commonly have lamellar 
exsolutions of ilmenite and/or rutile. Similar features were also reported 
in the Mercedita and Potosí chromite deposit of MBOM (Proenza et al., 
2001; Pujol-Solà et al., 2018; 2020a). We preliminarily infer that Ti-rich 
chromitites are resulted from metasomatism of parental magma of the 
gabbro dykes. Therefore, these Ti-rich chromitites subject to 

metasomatism are not included in Rui et al. (2022a), because this paper 
aims to discuss the magmatic process in the origin of Cayo Guam 
chromitites. As to the Ti-poor chromitites, Rui et al. (2022a) have also 
noticed that “A few occurrences of such Ti-poor high-Al chromitites have 
been reported, such as the Zambales ophiolite in Philippines (TiO2 =

0.05–0.22 wt%, Zhang et al., 2020) and the Dongbo ophiolite in Tibet 
(TiO2 < 0.15 wt%, Xiong et al., 2017)”, but they have never defined 
these “Ti-poor high-Al” samples as a new type of chromitite. 

3. High-pressure (HP) fingerprints in the massive chromitites 

3.1. Diamonds in the MBOM 

We noted that Pujol-Solà et al. (2020b) reported in situ diamond 
hosted below the polished surface of olivine in chromitite and gabbro at 
the deposit of Potosí of MBOM, which was already quoted in the 
Introduction part of Rui et al. (2022a). However, we also noted that 
Pujol-Solà et al. (2020b) proposed that these diamonds were formed at 
low pressure (<200 MPa) based on thermodynamic modelling of the 
solid and fluid assemblage in diamond-bearing inclusions. We value this 
interpretation from Pujol-Solà et al. (2020b), however, since we have 
already made comments on the same idea of “A shallow origin for di-
amonds in ophiolitic chromitites” (Yang et al., 2019), it is not appro-
priate to discuss this issue again in this new paper. 

3.2. Genetic connection between gabbros and chromitites 

In the Moa-Baracoa district, gabbro sills and dykes commonly occur 
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in or nearby the chromitite bodies of MBOM, and different opinions have 
been proposed for their genesis (e.g., Proenza et al., 1999; Marchesi 
et al., 2006; Pujol-Solà et al., 2018; González-Jiménez et al., 2020; Rui 
et al., 2022b). We all agree that gabbros show no evidence of HP or UHP 
metamorphism, however, the genetic connection between gabbros and 
chromitites is still unclear. In fact, these gabbros mostly are not synge-
netic with the massive chromitites (see details in 3.3), thus it is obvi-
ously unreasonable to deny HP fingerprints in massive chromitite by the 
existence of unmetamorphosed gabbros. Rui et al. (2022a) identified 
both HP and Low-pressure (LP) Cr-spinel grains in the massive chro-
mitites based on microstructural observations, and proposed that the HP 
Cr-spinel traveled upward with parental melt, deposited together with 
the LP Cr-spinel to form massive chromitites in the shallow mantle (Fig. 
16, Rui et al., 2022a). To be brief, the massive chromitites may remain 
some HP Cr-spinel grains when they were rising from relatively deep 
mantle and recrystallized with ambient P-T environments. This model 
also fits well with field and petrological observations of gabbro sills and 
dykes. 

3.3. Silicate exsolution lamellae in Cr-spinel 

Pujol-Solà et al. (2018) argued that the chromite grains containing 
clinopyroxene lamellae were not derived from UHP conditions, ac-
cording to (i) gabbro sills contacted with chromite orebodies show no 

evidence of HP/UHP metamorphism; and (ii) chromite grains yielded 
Raman spectra similar to the low-pressure chromite. 

Gabbros are intimately associated with orebodies in the region. 
Abundant interstitial clinopyroxene, plagioclase inclusions, and 
ilmenite and/or rutile lamellae within chromite can be traced in the 
proximities to the gabbros (Pujol-Solà et al., 2022), convincingly sug-
gesting that these chromites were strongly metasomatized by the 
parental magma of gabbros. Similar occurrences were documented in 
Potosí of MBOM and discussed in detail by Pujol-Solà et al. (2020a) and 
González-Jiménez et al. (2020). It should be not difficult to conclude 
that this metasomatism event has no directly genetic relationship with 
chromite deposit. 

Origin of silicate exsolution lamellae in Cr-spinel is still in debate (e. 
g., Chen et al., 2019; Liu et al., 2020; Yamamoto et al., 2009; Pujol-Solà 
et al., 2018). Pujol-Solà et al. (2022) provided an example that Liu et al. 
(2020) documented clinopyroxene lamellae coexisted with apatite in 
chromite grains from the Stillwater Complex, a typical type of stratiform 
chromite deposit, and proposed that the silicate lamellae represent 
trapped melt inclusions, with a conclusion that “clinopyroxene exsolu-
tion in chromite grains do not necessarily involve exsolution from a UHP 
phase”. We have no question for this, because as far as we known, 
similar lamellae composed of clinopyroxene + apatite has never been 
reported in Cr-spinel of podiform chromitites. 

As for the Raman spectra patterns of chromite grains are different 

Fig. 1. EBSD misorientation mapping of representative Cr-spinel grains in massive chromitites from the Cayo Guam area.  
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from UHP chromite (12 GPa) observed by Pujol-Solà et al. (2018), it is 
not unusual because the coesite-bearing chromite (>3 GPa) also display 
Raman spectra similar to the low-pressure chromite (Yamamoto et al., 
2009). Thus, integrated considerations of quantity of silicate lamellae, 
microstructure of chromite, and other evidence is necessary to 
discriminate LP from (U)HP chromite. Generally, dense lamellae of cli-
nopyroxene in chromite is still considered as result of exsolution upon 
exhumation from HP to UHP conditions (e.g., Colás et al., 2020; 
González-Jiménez et al., 2017; Xiong et al., 2022). 

3.4. Olivine chemistry 

In an individual chromite deposit, olivine grains in chromitites 
usually have higher Fo values and NiO concentrations than those from 
surrounding peridotites, which is generally attributed to subsolidus re- 
equilibration between olivine and Cr-spinel (e.g., Leblanc et al. 1984; 
Proenza et al., 1999; Yang et al., 2015; Arai and Miura, 2016; Xiao et al., 
2016; Xiong et al., 2022). Rui et al. (2022a) also interpreted that the 
high Fo and NiO contents of the olivines from the Cayo Guam chromi-
tites are resulted from cation exchange and/or redistribution during 
subsolidus re-equilibration. It should be noticed that some olivine in-
clusions from the massive chromitites have extremely higher Fo (up to 
97.2) and NiO (up to 1.12 wt%) than olivine inclusions and matrix from 
the semi-massive samples (Fig. 5a, Rui et al., 2022a). Since the diffusion 
coefficients of Mg and Ni in olivine are generally positively correlated 
with temperature (Jollands et al., 2016; Chakraborty, 1997), signifi-
cantly high Fo values and NiO contents indicate Mg and Ni redistribu-
tion into olivine in the massive chromitites during high-temperature or 
long-time re-equilibration. In addition, such high Fo values and NiO 
contents are also documented in olivine from UHP chromitites in Tibet 
(Fig. 5a, Rui et al., 2022a). 

3.5. Microstructural characteristics of overgrowth 

To further check the microstructural characteristics of chromitite, 
EBSD analysis for additional two massive chromitite samples from the 
Cayo Guam area were performed at CAGS. The detailed analytical pro-
cesses are same as those described by Rui et al. (2022a). Since the 
working area of EBSD detector in polished section is limited, it is diffi-
cult to obtain complete mapping for very large Cr-spinel grains. For the 
chromite, edge effects and polishing artifacts were only caused by broad 
ion beam polishing, resulting in small misorientations (<2◦) (Vukma-
novic et al., 2013). Our thin sections were mechanically polished by 
abrasive materials, and they would not be obviously affected by edge 
effects or polishing artifacts. 

EBSD mapping for additional two samples are present in Fig. 1. To 
avoid effect of cherry-picking of the coordination point for measuring 
the deviation angle, misorientation of Cr-spinel was displayed relative to 
crystal average orientation. EBSD mapping reveals that Cr-spinel grains 
suffered weak to strong crystal-plastic deformation and one large Cr- 
spinel crystal contains at least two small Cr-spinel grains (Fig. 1a–b). 
Combined with healed fractures, relict Cr-spinel subgrains (Rui et al., 
2022a), and small Cr-spinel inclusions (Fig. 1a–b), our EBSD data sug-
gested the overgrowth of large Cr-spinel crystal on pre-existing Cr-spinel 
grains during HP/high-temperature conditions (e.g., Xiong et al., 2017). 
Pujol-Solà et al. (2022) noticed similar misorientation of chromite grains 
from un-(U)HP metamorphosed Bushveld chromitites (e.g., Vukmanovic 
et al., 2013) and ophiolitic chromitites (e.g., Prichard et al., 2015). 
However, the chromite grains in their samples are usually small in size 
and have not experienced obviously overgrowth on pre-existing chro-
mite crystal (Prichard et al., 2015; Vukmanovic et al., 2013). 

4. Concluding remarks 

The term “Ti-poor high-Al” was used to describe the chemical fea-
tures of studied Cayo Guam chromitites of the MBOM, which has never 

been defined as a new type of chromitite. After integrated considerations 
of microstructural and mineralogical features, Rui et al. (2022a) found 
that some Cr-spinel grains in the massive chromitites show HP charac-
teristics, and inferred that these grains start to crystallize at relatively 
deep mantle. UHP Cr-spinel was not identified or proposed in our study. 
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