INSTITUTO SUPERIOR MINERO METALÚRGICO DE MOA "Dr. Antonio Núñez Jiménez" FACULTAD DE GEOLOGÍA – MINERIA DEPARTAMENTO DE MINERIA

METODOLOGÍA PARA EL DISEÑO DE LAS VOLADURAS EN LAS CANTERAS DE ÁRIDOS.

Tesis presentada en opción al grado científico de Doctor en Ciencias Técnicas.

ANTÓNIO M. PEDRO ALEXANDRE

MOA-2006

INSTITUTO SUPERIOR MINERO METALÚRGICO DE MOA "Dr. Antonio Núñez Jiménez" FACULTAD DE GEOLOGÍA - MINERIA DEPARTAMENTO DE MINERIA

METODOLOGÍA PARA EL DISEÑO DE LAS VOLADURAS EN LAS CANTERAS DE ÁRIDOS.

Tesis presentada en opción al grado científico de Doctor en Ciencias Técnicas.

Autor: Ing. ANTÓNIO M. PEDRO ALEXANDRE

Tutor: Pof. Tit., Ing. José A. Otaño Noguel, DrC

MOA - 2006

AGRADECIMIENTOS

Agradecimientos

La realización de este trabajo ha sido posible gracias a la colaboración de algunas personas, por lo que dejo por escrito mis sinceros agradecimientos.

- A los Gobiernos de Cuba y Angola por darme la posibilidad de superación y transformar nuestros sueños en realidad.
- Al Dr. José Otaño Noguel, tutor de este trabajo, por la confianza que ha depositado al poner en mis manos tan alta responsabilidad y por su exigencia en la necesidad de adquirir los conocimientos científicos.
- Al ISMMM, institución que me formó como ingeniero de minas.
- A todos los profesores del Departamento de Minería, por sus críticas y consejos.
- A la dirección de la empresa El Cacao, especialmente a Rodolfo, Lisbán, Rodney, Fidel y Carlos, por el apoyo brindado en la realización de los experimentos.
- Al Ing. Seidu Amadu Joe-Boy, por su colaboración.
- A los profesores de la Facultad de Geología y Minería.
- A Rebeca Seija Menezes, funcionaria de la embajada Angolana en Cuba por el aliento constante.
- A todas aquellas personas que se han preocupado por el desarrollo y culminación de esta investigación.

A TODOS, MUCHAS GRACIAS.

DEDICATORIA

Dedicatoria:

A la memoria del Dr. Joel Batista Leyva.

A mi esposa "Lic. Yamilé García Romero" y a mis hijas Stella y Stephanie Alexandre", por el cariño y apoyo brindado durante la realización de esta investigación.

SINTESIS

En el presente trabajo de investigación, se propone una metodología para el diseño de los patrones de voladura que considere las propiedades de las rocas, las características mecánico-estructurales del macizo, las propiedades de las diferentes sustancias explosivas y la acción de la explosión de éstas sobre el macizo.

Para validar la metodología propuesta se realizó un estudio analítico y experimental de la acción de la explosión en el macizo de rocas en la cantera El Cacao de la provincia de Granma, la misma es de gran importancia para el desarrollo económico y social de Cuba.

En la cantera de áridos "El Cacao" se confrontaba el problema de la salida, en las voladuras primarias, de un alto porcentaje de pedazos de rocas con dimensiones superiores a los admitidos por los eslabones siguientes de la cadena tecnológica, lo que provocaba la necesidad de la fragmentación secundaria. Con el objetivo de disminuir el porcentaje de pedazos sobre medida se realizaron investigaciones de las propiedades másicas y mecánicas de las rocas y del agrietamiento del macizo. A partir de las propiedades de estos macizos de rocas y de las características de las sustancias explosivas posibles a utilizar en ellas, se determinó analíticamente el estado tensional que se produce al explosionar cargas compactas, determinado los radios de agrietamiento y descostramiento en la dirección de la línea de menor resistencia, en la dirección de la línea de colocación de las cargas y según el eje de las cargas. A partir de las mismas se diseñaron los patrones de voladura y se comprobaron experimentalmente.

INDICE

INTRODUCCIÓN	Pág. 7
CAPITULO I. ANTECEDENTES Y ACTUALIDAD DEL TEMA.	11
I.1 Estado actual de esta problemática en el mundo.I.2 Antecedentes y actualidad del tema en Cuba.	11 30
CAPITULO II. METODOLOGIA PARA EL DISEÑO DE LOS PATRONES DE VOLADURA.	32
II.1 Determinación del diámetro de perforación y de la sustancia explosiva	32
 II.2 Determinación de las propiedades físicas de las rocas. II.3 Estudio del agrietamiento del macizo. II.4 Determinación analítica del estado tensional del macizo y las zonas de fragmentación al explosionar cargas compactas. 	34 37 38
 II.5 Diseño de los patrones de voladura. II.6 Ajuste experimental de los patrones de voladura. 	42 49
CAPITULO III. CARACTERIZACIÓN DEL YACIMIENTO EL CACAO.	50
 III.1 Ubicación geográfica. III.2 Características geológicas del yacimiento. III.3 Propiedades físicas de las rocas. III.3.1 Cálculo de la resistencia a cargas dinámicas producidas por la 	50 52 53 55
 Explosion de la roca. III.4 Estudio del agrietamiento. III.5 Patrones de voladura utilizados en la cantera El Cacao. 	56 59
CAPITULO IV. INVESTIGACIÓN ANALÍTICA DEL ESTADO TENSIONAL DEL MACIZO AL EXPLOSIONAR CARGAS COMPACTAS EN LA CANTERA EL CACAO.	61
 IV.1 Características de las sustancias explosivas a investigar. IV.2 Presión máxima en el frente de las ondas refractadas en la pared del barreno. 	61 63
IV.3 Cálculo de las tensiones en el macizo rocoso provocadas por la detonación de una carga compacta de sustancia explosiva al difundirse la onde refractada por el mismo.	64
IV.4 Determinación de los parámetros de las voladuras.	75

CAPITULO V. INVESTIGACIÓN EXPERIMENTAL DE LOS PATRONES DE 84 VOLADURA DISEÑADOS EN LA CANTERA EL CACAO.

V.1	Patrones de voladura utilizados en la investigación.	84
V.2	Análisis de la granulometría obtenida.	85
V.3	Ajuste de los patrones de voladura.	86
V.4	Valoración económica.	86
V.5	Valoración de impacto ambiental.	87
	CLUSIONES. OMENDACIONES. ERENCIAS BIBLIOGRÁFICAS.	88 89

ANEXOS.

Introducción

El estudio de las cuestiones relacionadas con la acción de la explosión en el medio y la elaboración sobre la base de estos, de métodos de cálculo de las cargas se realiza desde principios del siglo XVII. Sin embargo debido a la extraordinaria complejidad y rapidez de los procesos que surgen durante la explosión hasta hoy en día no se ha creado una teoría, que exprese cuantitativamente, los fenómenos que surgen durante la explosión.

Para crear métodos ingenieriles de cálculo de las cargas, diferentes autores han propuesto una serie de fórmulas. En prácticamente todas se toma como parámetro de partida el diámetro de carga o de perforación, en muy pocas se utilizan características de resistencia de las rocas y la presión de la detonación y en prácticamente ninguna se utiliza la esencia física de la acción de la explosión en el medio, donde se consideren las propiedades de la sustancia explosiva, los parámetros de la detonación y las características de resistencia de las rocas y estructurales del macizo en su interacción.

Con el objetivo de aplicar el conocimiento acumulado hasta ahora por diferentes investigadores acerca de la acción de la explosión en el macizo de rocas, se propone una metodología para el diseño de los patrones de voladura que considere las propiedades de las rocas, las características mecánico-estructurales del macizo, las propiedades de las diferentes sustancias explosivas y la acción de la explosión de éstas sobre el macizo.

Para validar la metodología propuesta se realizó un estudio analítico y experimental de la acción de la explosión en el macizo de rocas en la cantera El Cacao de la provincia de Granma.

En la cantera de áridos "El Cacao" se confrontaba el problema de la salida en las voladuras primarias, de un alto porcentaje de pedazos de rocas con dimensiones superiores a los admitidos por los eslabones siguientes de la cadena tecnológica, lo que provocaba la necesidad de un gran volumen de la fragmentación secundaria, la cual trae aparejado numerosos inconvenientes y el encarecimiento de todas las labores que en última instancia se refleja en el costo de producción. Con el objetivo

Ing. António M. Pedro Alexandre

de disminuir el porcentaje de pedazos sobre medida se realizaron investigaciones de las propiedades másicas y mecánicas de las rocas y el agrietamiento del macizo. A partir de las propiedades de estos macizos de rocas y de las características de las sustancias explosivas posibles a utilizar en ellas, se determinó analíticamente el estado tensional que se produce al explosionar cargas compactas, los radios de agrietamiento y descostramiento en la dirección de la línea de menor resistencia, en la dirección de la línea de colocación de las cargas y según el eje de las cargas. A partir de los mismos se diseñaron los patrones de voladura y se comprobaron experimentalmente.

La tesis consta de una introducción, 5 capítulos, conclusiones, recomendaciones, referencias bibliografícas y anexos.

En el capítulo I se dan los resultados de las investigaciones realizadas acerca de la problemática de las voladuras en el mundo y en Cuba.

En el capítulo II se propone la metodología para el diseño de los patrones de voladura para el arranque de las rocas en las canteras de áridos.

En el capítulo III se hace la caracterización del yacimiento El Cacao.

En el capítulo IV se determinó analíticamente el estado tensional del macizo al explosionar cargas compactas y se diseñaron los patrones de voladura.

En el capítulo V se dan los resultados de los trabajos experimentales realizados en la cantera El Cacao.

Problema.

Necesidad de una metodología para el diseño de los patrones de voladura que considere las propiedades de las rocas y las características mecánico-estructurales del macizo, las propiedades de las sustancias explosivas y la acción de la explosión en el macizo, que permita obtener la granulometría requerida de las rocas.

Hipótesis.

Si se cuenta con una metodología para el diseño de las voladuras que contemple las propiedades de las rocas y las características mecánico-estructurales del macizo, las propiedades de las sustancias explosivas y la acción de la explosión en el medio, es posible obtener la granulometría requerida de las rocas.

Objetivo general.

Elaborar una metodología para el diseño de las voladuras que contemple las propiedades de las rocas y las características mecánico-estructurales del macizo, las propiedades de las sustancias explosivas y la acción de la explosión en el macizo de rocas.

Objetivos específicos.

- Investigar la situación de la problemática de las voladuras en el mundo y en Cuba.
- Sistematizar los conocimientos existentes acerca de la acción de la explosión en el macizo de rocas y establecer los aspectos que se deben contemplar en la metodología para el diseño de los patrones de voladura.
- Comprobar experimentalmente la metodología en la cantera El Cacao, para lo cual es necesario:
- a). Determinar las propiedades físicas y mecánico-estructurales del macizo que influyen en las voladuras de las rocas.
- b). Determinar analíticamente la acción de la explosión de las diferentes sustancias explosivas disponibles en el macizo.
- c). Diseñar los patrones de voladura con las diferentes sustancias explosivas disponibles y comprobarlos experimentalmente en la cantera.

Novedad científica del trabajo.

La utilización en la metodología propuesta de:

- Los radios de agrietamiento y descostramiento para determinar la línea de menor resistencia, la longitud de sobreperforación y la longitud de relleno.
- El radio de agrietamiento para determinar la distancia entre barrenos en la fila.
- El coeficiente de debilitamiento de las tensiones de las ondas debido al agrietamiento del macizo en la dirección de la línea de menor resistencia, en la dirección de la línea de colocación de las cargas y en la dirección del eje de los barrenos, para establecer los parámetros de los patrones de voladura.

Los resultados de este trabajo han sido presentados en los siguientes eventos:

- > XV Forum de Ciencia y Técnica del ISMM. Moa, 2003.
- IV Conferencia Internacional de Aprovechamiento de los Recursos Minerales, CINAREM 2004. Moa, 2004.
- > I Jornada Científica de la Sociedad Cubana de Geología. Moa, 2004.
- I Convención Internacional de las Geociencias y la Química aplicadas a la construcción, Santiago de Cuba, 2005.

Publicaciones sobre el tema:

- Propiedades físicas del yacimiento de calizas "El Cacao". Revista Geología y Minería, XXI No.-3-4 de 2005.
- Acción de la explosión en el medio provocado por cargas compactas. Cantera El Cacao. Revista Geología y Minería, XXI No.-3-4 de 2005.
- Perfeccionamiento de los trabajos de voladura en la cantera de áridos "El Cacao". Memorias de la 1ra Convención Internacional de las Geociencias y la Química aplicadas a la construcción, CD-ROM, ISBN 959-247-021-9

CAPITULO I

Capítulo I. Antecedentes y actualidad del tema.

I.1 Estado actual de esta problemática en el mundo.

Las primeras investigaciones de la acción de la explosión y de cálculo de las cargas las realizaron los ingenieros militares para el trabajo con minas. Aquí el análisis se reducía a la acción de la explosión de las cargas en suelos con una superficie libre para obtener determinados parámetros de los conos de la explosión.

Estas investigaciones se basaban en el principio, enunciado ya en 1628 por Boban y Debil, "La resistencia ofrecida a la carga, es proporcional al volumen (peso) de la roca fragmentada". Además en todos los cálculos se consideraba el principio de semejanza de la acción de la explosión, es decir, para condiciones iguales de la explosión de diferente escala (diferentes líneas de menor resistencia) los resultados de la explosión (forma del cono de fragmentación) son semejantes (Sujanov y Kutuzov, 1967).

Los trabajos en esta dirección no conducían al estudio de la esencia física de la fragmentación de las rocas, sino a la búsqueda de fórmulas que permitieran realizar los cálculos para diferentes condiciones de la explosión. En las fórmulas se introducían coeficientes, que consideraban el índice de la acción de la explosión, la profundidad de colocación de las cargas, las propiedades de las rocas, el tipo de sustancia explosiva (SE) y otros.

Este enfoque, aunque no da la posibilidad de obtener fórmulas teóricas generales, permite el amplio uso hasta hoy en día de estas fórmulas de cálculo.

Una serie de investigadores, comenzando desde el siglo XVIII diferenciaron los gastos de energía en la explosión: para separar parte del macizo fragmentado por la superficie lateral del cono de la explosión, para vencer la fuerza de gravedad o inercia de la masa del volumen de roca explosionado, etcétera.

La superficie total de los pedazos de roca en la fragmentación primaria se toma por una serie de autores proporcional al área de la superficie lateral del cono de la explosión. La velocidad de aplicación de las cargas se determina por la velocidad de detonación de las cargas de SE. Sobre la base de una gran cantidad de experimentos, realizados en condiciones de laboratorio y naturales, se estableció que, con el aumento de la línea de menor resistencia, el peso de la carga estará determinado fundamentalmente por el peso volumétrico de la roca y no por su resistencia y, por el contrario, para pequeños valores de la línea de menor resistencia, la magnitud de la carga estará determinada básicamente por las características resistentes de las rocas voladas.

En dependencia de la resistencia de las rocas la magnitud de la carga para profundidad hasta 1 m varía de 15-50 veces y para profundidad 10 m de 3-3,5 veces.

En dependencia del peso volumétrico de las rocas, el peso de la carga varía de 1,5– 3 veces para cualquier profundidad de colocación de la carga.

La magnitud de la carga de acuerdo con lo anteriormente expresado en forma general será (Sujanov y Kutuzov, 1967):

$$Q = q_1 S + q_2 V$$

Donde:

 q_1 - gasto de SE por 1 m² del área de separación de la roca del macizo, Kg/m²; q_2 - gasto de SE por 1 m³ del macizo fragmentado para superar la fuerza de gravedad, Kg/m³;

S - área de separación por la superficie lateral del cono de la explosión, m^2 ; V -volumen del cono de la explosión, m^3 .

Veamos un recuento de las principales metodologías de cálculo de los parámetros de las voladuras en los trabajos a cielo abierto en los últimos años:

Andersen (1952) (Manual de perforación y voladuras de rocas, 1994).

$$W = K\sqrt{D^*L}$$

Donde:

W - línea de menor resistencia (pies)

D-diámetro (pies)

L - longitud del barreno (pies)

K - constante empírica

Esta fórmula no tiene en cuenta las propiedades del explosivo ni de la roca.

Fraenkel (1952) (Manual de perforación y voladuras de rocas, 1994).

$$W = \frac{R_{\nu} * L^{0,3} * I^{0,3} * D^{0,8}}{50}$$

Donde:

W - línea de menor resistencia (m)

L - longitud del barreno (m)

I - longitud de la carga (m)

D-diámetro del barreno (mm)

 R_{v} - resistencia a la voladura, oscila entre 1 y 6 en función del tipo de roca:

- Rocas con alta resistencia a la compresión (1,5)
- Rocas con baja resistencia a la compresión (5)

En la práctica se emplean las siguientes relaciones simplificadas:

W se reduce a 0,8 W < 0,67 L

I se toma como 0,75 L

S debe ser menor de 1,5 W

En esta fórmula no se tiene en cuenta las propiedades del explosivo y la resistencia de la roca se valora de forma cualitativa.

Pearse (1955) (Manual de perforación y voladuras de rocas, 1994).

Utilizando el concepto de la energía de deformación por unidad de volumen obtuvo la siguiente ecuación:

$$W = K_{\nu} * 10^{-3} * D \left[\frac{PD}{RT} \right]^{\frac{1}{2}}$$

Donde:

w - línea de menor resistencia (m)

 K_{ν} - constante que depende de las características de las rocas (0,7 - 1,0)

D-diámetro del barreno (mm)

PD - presión de detonación del explosivo (Kg/cm²)

RT - resistencia a tracción de la roca (Kg/cm²)

En esta fórmula se emplea la presión de detonación del explosivo y la resistencia a tracción de la roca, sin que se establezca la esencia física de la relación entre estos parámetros.

Hino (1959) (Manual de perforación y voladuras de rocas, 1994).

$$W = \frac{D}{4} \left(\frac{PD}{RT}\right)^{\frac{1}{n}}$$

Donde:

W - línea de menor resistencia (m)

D- diámetro del barreno (cm)

RT - resistencia dinámica a tracción (Kg/cm²)

n - coeficiente que depende del binomio explosivo-roca y que se calcula a partir de voladuras experimentales en cráter.

$$m = \frac{\log\left(\frac{PD}{RT}\right)}{\log 2\left(\frac{Do}{d/2}\right)}$$

Donde:

Do – profundidad óptima del centro de gravedad de la carga (cm), determinada gráficamente a partir de los valores de la ecuación.

$$D_g = \Delta \sum V_e^{\frac{1}{3}}$$

Donde:

d – diámetro de la carga de explosivo.

 D_{e} - profundidad del centro de gravedad de la carga.

 Δ - relación de profundidades $\frac{D_s}{D}$

constante volumétrica del cráter.

 V_e - volumen de la carga usada.

En esta metodología de cálculo se contempla la presión de detonación, la resistencia dinámica a tracción de la roca, sin que tampoco se considere la esencia física de estos parámetros.

Allsman (1960) (Manual de perforación y voladuras de rocas, 1994).

$$W_{\max} = \sqrt{\frac{\operatorname{Im} pulso * g}{\Pi * \rho_r * V}} = \sqrt{\frac{PD * D * \Delta t * g}{\rho_r * V}}$$

Donde:

 W_{max} - línea de menor resistencia máxima (m)

PD - presión de detonación media (N/m²)

 Δt - duración de la presión de detonación (s)

Π-3,1416

 ρ_r - peso específico de la roca (N/m³)

V - velocidad mínima que debe impartirse a la roca (m/s)

D - diámetro del barreno (m)

g - aceleración de la gravedad (9,8 m/s²)

Aunque utiliza la presión de detonación y su duración así como la velocidad mínima que debe imprimirse a la roca no establece la esencia de la acción de la explosión en el macizo. Ash (1963) (Manual de perforación y voladuras de rocas, 1994).

$$W = \frac{K_B * D}{12}$$

Donde:

W - línea de menor resistencia (pies)

D - diámetro del barreno (pulgadas)

 K_{B} - coeficiente que depende de la clase de roca y tipo de explosivo.

Tabla 1 Valores del coeficiente K_{B} .

Tipo de explosivo	Clase de roca			
	blanda	media	dura	
Baja densidad (0,8 – 0,9 gr/cm ³) y baja potencia	30	25	20	
Densidad media (1,0 – 1,2 gr/cm ³) y potencia media	35	30	25	
Alta densidad (1,3 – 1,6 gr/cm ³) y alta potencia	40	35	30	

Profundidad de barreno: $L = K_L * W$ (K_L - entre 1,5 y 4)

Sobreperforación: $J = K_J * W$ (K_J - entre 0,2 y 0,4)

Retacado: $T = K_r * W$ (K_r - entre 0,7 y 1)

Espaciamiento: $S = K_s * W$

 $K_s = 2,0$ para iniciación simultánea.

 $K_s = 1,0$ para barrenos secuénciales con medio retardo.

 $K_s = 1,2 \text{ y } 1,8 \text{ para barrenos secuénciales con pequeño retardo.}$

Contempla tanto las propiedades del explosivo como de las rocas en un rango bastante estrecho y utiliza una serie de coeficientes que no consideran la acción física de la explosión en el macizo.

Langefors y Kihlstrom (1963)

$$W_{\text{max}} = \frac{D}{33} \sqrt{\frac{\rho_e * PRP}{\bar{C}^* f * \left(\frac{S}{W}\right)}}$$

Donde:

 W_{max} - línea de menor resistencia máxima (m);

D - diámetro del barreno (mm);

C - constante de roca (Calculada a partir de C);

f - factor de fijación. Barrenos verticales f = 1

Barrenos inclinados 3:1 f = 0,9

Barrenos inclinados 2:1 f = 0,85

 $\frac{S}{W}$ - relación espaciamiento / línea de menor resistencia;

 ρ_r - densidad de carga (Kg/dcm³);

PRP - potencia relativa en peso del explosivo (1-1,4).

La constante C es la cantidad de explosivo necesaria para fragmentar 1 m³ de roca, normalmente en voladuras a cielo abierto y rocas duras se toma C = 0,4. Ese valor se modifica de acuerdo con:

> B = 1,4 - 15 m $\bar{C} = C + 0,75$ B<1,4 m $\bar{C} = \frac{0,07}{W} + C$

La línea de menor resistencia práctica se determina a partir de:

$$W = W_{\max} - e - d_b * H$$

Donde:

H - altura de banco, (m);

e' - error de emboquille (m/m);

 d_b - desviación de los barrenos, (m);

Ing. António M. Pedro Alexandre

Considera las propiedades del explosivo solo a través de su potencia relativa en peso en un rango bastante estrecho, las propiedades de la roca a través de la constante de roca que se calcula a partir del gasto específico de SE en un rango muy estrecho y de una serie de factores geométricos de las voladuras sin considerar la esencia física de la acción de la explosión en el macizo de rocas.

Hansen (1967) (Manual de perforación y voladuras de rocas, 1994).

, Hansen modificó la ecuación original de Langefors y Kihlstrom y propuso la siguiente expresión:

$$Q_b = 0.028 \left(\frac{H}{W} + 1.5\right) * W^2 + 0.4 * F_r \left(\frac{H}{W} + 1.5\right) W^3$$

 Q_b - carga total de explosivo por barreno (Kg);

H-altura de banco (m);

W - línea de menor resistencia (m);

 F_r - factor de roca (Kg/m³).

Los factores de roca F_r se determinan a partir de la siguiente tabla:

Tipo de roca	F, Kg/m ³	<i>Rc</i> MPa	<i>Rt</i> MPa
I	0,24	21	0
11	0,36	42	0,5
III	0,47	105	3,5
IV	0,59	176	8,5

Tabla 2 Determinación de los factores de roca.

Este autor al modificar la ecuación original de Langefors y Kihlstrom no introdujo nada nuevo con respecto a la acción de la explosión en el macizo de rocas.

Ucar (1972) (Berta, 1985).

La fórmula desarrollada por Ucar es:

$$1{,}5W^2 * H + 2W * q_1 - 3H * q_1 = 0$$

Donde:

W - línea de menor resistencia (m);

H - altura de banco (m);

 q_1 - concentración de carga (Kg/m).

El valor de W se obtiene resolviendo la ecuación de segundo grado anterior. Las hipótesis de partida son:

- Consumo específico de explosivo (0,4 Kg/m³);
- Carga total de explosivo por barreno (Kg);

$$Q_b = 0,4 * W * S * H$$

Concentración lineal de carga (Kg/m);

$$q_L = \rho_e \left(\frac{D}{36}\right)^2$$

• Longitud de carga (m);

$$l = H - W + \frac{W}{3}$$

Espaciamiento igual a la línea de menor resistencia.

Donde:

 ρ_e - densidad del explosivo (gr/cm³);

D-diámetro de carga (mm);

S-espaciamiento, (m).

Este autor no utiliza las propiedades de la roca y del explosivo sólo su densidad.

Konya (1972) (Berta, 1985).

$$W = 3,15 * d * \left[\frac{\rho_{e}}{\rho_{r}}\right]^{0,33}$$

Donde:

W - línea de menor resistencia (pies)

d- diámetro de la carga (pulgadas)

 ρ_e - densidad del explosivo;

 ρ_r - densidad de la roca.

El espaciamiento se determina a partir de las siguientes expresiones:

•	Barrenos en una sola fila inst	antáneos.
	H < 4W	$S = \frac{H + 2W}{3}$
	H > 4W	S = 2W

• Barrenos en una fila secuenciados H < 4W $S = \frac{H + 7W}{8}$

$H \ge 4W$	S = 1.4W

Retacado.

Roca masiva	T = W
Roca estratificada	T = 0.78

Konya modificó está fórmula en 1983.

$$W = \left[\frac{2\rho_{e}}{\rho_{r}} + 1.5\right] * d$$

Donde:

W - línea de menor resistencia (pies)

D- diámetro de la carga (pulgadas)

y añadió J = 0,3W

Utiliza tanto de la roca como del explosivo solo su densidad.

Ing. António M. Pedro Alexandre

Földesi (1980) (Manual de perforación y voladuras de rocas, 1994).

$$W = 0.83 * D * \sqrt{\frac{\rho_e}{m * CE}}$$

Donde:

W - línea de menor resistencia (m);

D- diámetro del barreno (mm);

 ρ_e - densidad del explosivo dentro del barreno (Kg/m³);

CE - consumo específico de explosivo (Kg/m³).

$$m = 1 + \frac{0,693}{(\rho_e * VD^2) - \ln RC - 1,39}$$

VD - velocidad de detonación del explosivo (m/s);

RC - resistencia a compresión de la roca (MPa);

m - en el caso de secuencias instantáneas se toma:

2,2 < *m* < 2,8

1,1<*m*<1,4

y para secuencias con microrretardos

Espaciamiento	S = m + W
Distancia entre filas	$B_{f=} = 1,2 * W$

Retacado

$$T = 1,265 * \frac{W * VD}{VC} * \sqrt{\frac{\rho_e}{\rho_s}}$$

 ρ_s - densidad del material de retacado en el barreno.

Sobreperforación J = 0,3W

Utiliza la densidad, el consumo específico, la velocidad de detonación del explosivo y la resistencia a compresión de la roca sin que se establezca una relación entre estos parámetros en su interacción.

Praillet (1980) (Berta, 1985).

$$W^{3} = \frac{W^{2}(H-K)}{D} - \left[\frac{2.4*\rho_{e}*\left[\frac{VD}{4000}\right]^{2}*(H+J-T)*D^{2}}{10RC}\right] = 0$$

Donde:

W - línea de menor resistencia (m); S = W

. H - altura del banco (m);

K- constante (12,5 para excavadoras de cable y 51 para dragalinas);

D- diámetro del barreno (mm);

 ρ_e - densidad del explosivo;

VD - velocidad de detonación del explosivo (m/s);

J - sobreperforación (m);

T - retacado (m);

RC - resistencia a compresión de la roca (MPa).

El valor de W se determina por aproximaciones sucesivas.

Al igual que en el caso anterior, se utiliza la densidad, velocidad de detonación del explosivo y la resistencia a compresión de la roca.

López Jimeno, E. (1986)

Incorporó a la fórmula de Ash, la velocidad de las ondas sísmicas del macizo rocoso.

$$W = 0,76 * D * F$$

Donde:

W - línea de menor resistencia (m);

D-diámetro del barreno (pulg);

F - factor de corrección en función de la clase de roca y tipo de explosivo.

$$F = fr^* fe$$
$$fr = \left[\frac{2,7*3500}{p_r * VC}\right]^{0,33}$$
$$fe = \left[\frac{\rho_e * VD^2}{1,3*3660^2}\right]^{0,33}$$

Donde:

 ρ_r - densidad de la roca (gr/cm³);

VC - velocidad de propagación de las ondas sísmicas en el macizo rocoso (m/s);

 ρ_{e} - densidad de la carga de SE (gr/cm³);

VD - velocidad de detonación del explosivo (m/s).

La fórmula es válida para diámetros entre 165 y 250 mm.

Para barrenos de mayor diámetro el valor de la línea de menor resistencia se afectará de un coeficiente reductor 0,9.

Este autor modifica la fórmula de Ash para tener en cuenta la velocidad de las ondas sísmicas del macizo rocoso para determinar a partir de estas y de la velocidad de detonación y la densidad del explosivo un factor de corrección del valor de la línea de menor resistencia, sin que se relacione las características del explosivo y de las rocas en su interacción.

Berta (1985)

$$W = d * \sqrt{\frac{\Pi * \rho_e}{4*CE}}$$

Donde:

W - línea de menor resistencia (m);

d - diámetro de la carga (m);

- ρ_e densidad del explosivo (Kg/m³);
- CE consumo específico de SE (Kg/m³).

Para determinar CE se emplea la fórmula:

$$CE = \frac{g_f * E_s}{n_1 * n_2 * n_3 * E}$$

Donde:

 g_{l} - grado de fracturación volumétrica (m²/m³);

Supone que $g_f = \frac{64}{M}$, donde *M* es el tamaño máximo de fragmento en metros.

 E_s - energía específica superficial de fragmentación (MJ/m²);

E - energía especifica del explosivo (MJ/Kg);

n₁ - característica del binomio explosivo/roca.

Ing. António M. Pedro Alexandre

- n_2 característica geométrica de la carga
- n₃ rendimiento de la voladura, normalmente 0,15.

$$n_{1} = 1 - \frac{(\rho_{e} * VD - \rho_{r} * VC)^{2}}{(\rho_{e} * VD + \rho_{r} * VC)^{2}}$$
$$n_{2} = \frac{1}{e^{\frac{D}{d}} - (e - 1)}$$

Donde:

- VD velocidad de detonación del explosivo (m/s).
 - VC velocidad de propagación de las ondas en la roca (m/s);
 - ρ_r densidad de la roca (Kg/m³);
 - D diámetro del barreno (m).

Considera las características de las rocas a través de la velocidad de propagación de las ondas, la energía específica superficial de fragmentación, su densidad y la del explosivo a través de su velocidad de detonación y su energía específica, para determinar coeficientes que permitan llegar al consumo específico de explosivo sin que se tenga en cuenta la esencia física de la explosión en el macizo.

Bruce carr (1985) (Manual de perforación y voladuras de rocas, 1994).

El método incluye los siguientes cálculos:

Impedancia de la roca.

$$Z_r = 1,31*\rho_r*\frac{VC}{1000}$$

Donde:

 ρ_r - peso específico de la roca;

VC - velocidad sísmica de la roca (m/s);

Presión de detonación del explosivo.

$$PD = \frac{0,418 * \rho_e * \left[\frac{VD}{1000}\right]^2}{0,8 * \rho_e + 1}$$

 ρ_e - densidad del explosivo;

VD - velocidad de detonación del explosivo (pies/s).

Consumo específico característico.

$$CEC = \frac{Zr}{PD}$$

Espaciamiento entre barrenos.

$$S = 3 \frac{\rho_e * d^2}{\sqrt{CEC}}$$

Donde:

d - diámetro de la carga (pulg);

• Línea de menor resistencia.

W = S * 0,833

Retacado.

$$T = W$$

• Sobreperforación.

$$J = (0, 3 - 0, 5)S$$

Este autor en su metodología parte de determinar el espaciamiento entre barrenos considerando la densidad y consumo específico característico del explosivo. Para determinar este consumo específico característico, se parte de la impedancia de la roca y la presión de detonación que como sabemos se determina a partir de la velocidad de detonación, la densidad y el índice de la adiabática de los productos de la explosión. Para determinar la impedancia de la roca, utiliza la densidad y la velocidad de las ondas en las rocas. Aunque utiliza elementos importantes de las características de la detonación de las sustancias explosivas y de la roca, tampoco utiliza la esencia física de la acción de la explosión para determinar los parámetros de diseño de las voladuras.

Olofsson (1990)

$$W = K\sqrt{q_f} * R_1 * R_2 * R_3$$

K - constante que depende del tipo de explosivo:

- Explosivos gelatinosos 1,47 - Emulsiones 1,45
- ANFO 1,36

Ing. António M. Pedro Alexandre

 q_{f} - concentración de la carga de fondo del explosivo elegido (Kg/m)

 R_1 - factor de corrección por inclinación de los barrenos.

 R_2 - factor de corrección por el tipo de roca.

R₃-factor de corrección por altura de banco.

Los factores de corrección R_1 y R_2 se determinan por las siguientes tablas:

Inclinación	∞:1	10:1	5:1	3:1	2:1	1:1
R ₁	0,95	0,96	0,98	100	1,03	1,10

Tabla 4 Determinación de los factores de corrección R2

Constante de roca C	0,3	0,4	0,5
R_2	1,15	1,00	0,90

Cuando la altura de banco $H < 2W_{max}$ y los diámetros de perforación son menores de 102 mm el valor de R₃ se obtiene de la expresión:

$$R_3 = 1.16 - \left[0.16 \frac{H_2}{H_1}\right]$$

Donde:

 H_1 - altura del banco actual

 H_2 -altura de banco = $2W_{max}$ (H > 1)

Para determinar la línea de menor resistencia práctica se utiliza la misma fórmula del método de Langefors.

Prácticamente no utiliza ninguna de a las propiedades importantes de los explosivos ni de las rocas en las voladuras.

Rustan (1990)

$$W = 18.1 * D^{0.689}$$

Donde:

D- diámetro de los barrenos (entre 89 y 311 mm);

Esta fórmula se obtuvo por análisis de regresión a partir de una población de 73 datos, con un coeficiente de correlación de n = 0.78.

Este autor no utiliza ni las propiedades de la roca ni del explosivo, sino datos experimentales a partir sólo del diámetro de perforación.

López Jimeno, C. (Manual de perforación y voladuras de rocas, 1994).

En el manual de perforación y voladura de rocas del Instituto Superior Geominero de España, Carlos López Jimeno propone la división de las voladuras en banco a cielo abierto en dos grupos: voladuras de pequeño diámetro (65-165 mm) y voladuras de gran diámetro (180-450 mm).

En las voladuras de pequeño diámetro se sigue la técnica desarrollada por Langefors y Kihlstrom y en las de gran diámetro la técnica del cráter enunciada por Livingston.

En las voladuras de pequeño diámetro las cargas son cilíndricas y alargadas con una relación $\frac{l}{D}$ >100 y se realizan generalmente con dos tipos de explosivos, uno para la carga de fondo y otro para la carga de columna. El valor de la línea de menor resistencia, el espaciamiento entre cargas en la fila, la longitud del retacado y la longitud de la sobreperforación se dan en función del diámetro de los barrenos, la resistencia a compresión simple de la roca y el tipo de explosivo empleado.

En las voladuras de gran diámetro la línea de menor resistencia, la longitud del retacado y la sobreperforación, también se determinan a partir del diámetro de carga, la resistencia a compresión simple de la roca y el tipo de explosivo utilizado.

Ing. António M. Pedro Alexandre

En este caso se dan reglas simples para el diseño geométrico de las voladuras, en una primera aproximación, caracterizando la roca por la resistencia a compresión simple y se recomienda hacer pruebas y análisis de los resultados para ajustar los esquemas y cargas de los explosivos en función de las características estructurales del macizo.

Especialistas Soviéticos:

Desde las primeras décadas del siglo XX en la entonces Unión Soviética se desarrollaron metodologías de cálculo, entre las principales, tenemos (Otaño, 1998):

$$W = 53K_T * d\sqrt{\frac{\Delta}{\gamma}}$$

Donde:

W - línea de menor resistencia (m);

 K_{τ} - coeficiente de agrietamiento del macizo (varia de 1,0 – 1,2);

d - diámetro de barreno, m;

 Δ - densidad de carga, t/m³;

y - masa volumétrica de la roca, t/m³;

$$W = \frac{\sqrt{0,56*p^2 + 4*m*q*p*H*l}}{2*m*q*H} - 0,75*p, \quad \mathsf{m}$$

Donde:

p - cantidad de SE por metro de barreno, Kg;

q-gasto específico de SE (Kg/m³);

H - altura de banco (m);

1- profundidad de los barrenos, (m);

m - coeficiente de aproximación de los barrenos (0,8 -1,6);

La distancia entre barrenos en la fila y entre filas.

$$a = b = m * W$$

Longitud de sobreperforación.

$$l_{P} = (0, 1 - 0, 2) * W$$

Longitud del relleno.

$$lr = 0,75 * W$$

Ing. António M. Pedro Alexandre

La magnitud de la carga de cada barreno.

$$Q = q^* a^* W^* H$$
, Kg

En este caso se tienen en cuenta las características del explosivo a través de su densidad y la de las rocas a través de su densidad, su masa volumétrica y el agrietamiento del macizo a través de un coeficiente y tampoco se tiene en cuenta la esencia física de la acción de la explosión en el macizo de rocas.

Como se ve en las metodologías de cálculo de los parámetros de los pasaportes propuestas por los diferentes autores en los últimos años, en prácticamente todas se plantea determinar como parámetro básico la línea de menor resistencia y a partir de ella se determinan los demás parámetros. En prácticamente todos los casos se parte, a nuestro juicio correctamente del diámetro de carga o de perforación para determinar la línea de menor resistencia, pero en ninguna se utilizan todos los elementos componentes del proceso de fragmentación de las rocas, donde se consideren las características mecánico-estructurales del macizo de rocas, las propiedades de las sustancias explosivas y la esencia física de la acción de la explosión en el macizo en su interacción.

Desde las primeras décadas del siglo XX con el auge de la explotación a cielo abierto de los yacimientos minerales, al contar con equipos de mayor potencia, y debido al avance de la electrónica y la construcción de instrumentos de medición de mayor alcance, a la par que se continúan los trabajos con vistas a la obtención de fórmulas de cálculo ingenieriles para los parámetros de las voladuras en los trabajos a cielo abierto se comienza a prestar mayor interés a la investigación de la esencia física de los fenómenos que ocurren durante la explosión y a la creación a partir de estas de fórmulas de cálculo de las cargas.

Estos trabajos se han realizado en dos direcciones:

- ✓ Investigaciones, en las cuales las rocas se analizan como un medio deformable, considerando el proceso de transferencia de la energía de la explosión a la roca y su influencia en la fragmentación;
- Investigaciones, en las cuales las rocas se comparan con un líquido ideal, incompresible y se analiza la distribución final de la energía en la roca.

La primera dirección ha sido elaborada por (Pokrovski, 1957) y desarrollada en los trabajos de (Xanukaev, 1974) y (Kucheriavi y otros, 1968) y la segunda en los trabajos de (Blasov y Smirnov, 1962).

En nuestro trabajo seguiremos la primera de estas direcciones y utilizaremos los resultados que se han obtenido en las investigaciones acerca de la refracción de las ondas de choque producidas por la explosión de cargas compactas cilíndricas en la pared del barreno, el estado tensional al difundirse éstas por el macizo de rocas y la determinación de las zonas de fragmentación producidas alrededor de la carga y en la reflexión de las ondas elásticas desde la superficie libre.

1.2 Antecedentes y actualidad del tema en Cuba.

En Cuba, en las canteras de áridos los parámetros de los trabajos de voladura se han calculado siguiendo las metodologías de la antigua Unión Soviética (Otaño, 1998), fundamentalmente, la que calcula la línea de menor resistencia teniendo en cuenta el diámetro de perforación, la densidad de carga, la capacidad de trabajo de la SE y la densidad y agrietamiento de las rocas.

$$W = K_T * d \sqrt{\frac{\Delta e}{\gamma}}, \quad m$$

$$a = b = m * W, \quad m$$

$$ls = (0, 1 - 0, 2) * W, \quad m$$

$$lr = 0, 75 * W, \quad m$$

$$Q = q * a * W * H, \quad Kg$$

Donde:

 K_{T} - coeficiente de agrietamiento del macizo rocoso $K_{T} = (1, 0 - 1, 2);$

d - diámetro de barreno, m;

 Δ - densidad de carga, t/m³;

 γ - masa volumétrica de las rocas, t/m³;

m - coeficiente de aproximación de los taladros (m = 0,8-1,6) en la mayoría de los casos (m = 0,9-1,1);

H - altura de banco, m;

e - coeficiente de la capacidad de trabajo de la SE;

Ing, António M. Pedro Alexandre

q - gasto específico de SE, Kg/m³;

También se ha utilizado la metodología de Langefors y Khilstrom (sueca) sobre todo a través del uso de las tablas propuestas en el manual de perforación y voladuras de rocas del Instituto Tecnológico Geominero de España.

El primer trabajo que realiza un estudio analítico y experimental de la acción de la explosión en el macizo, en Cuba, es el realizado por (Otaño, 1984) "El corte de monolitos y bloques de mármol por el método hidroexplosivo. En el mismo se realiza una investigación analítica del estudio tensional del macizo por la línea de cargas de cordón detonante en agua, una investigación experimental del proceso de formación de las grietas y de las irregularidades de la superficie en la separación de los bloques y monolitos de mármol con cordón detonante en barrenos rellenos con agua, en condiciones naturales y en base a ellos se establecen los parámetros de la explosión para la separación de bloques y monolitos de mármol con agua.

Posteriormente, en los trabajos de perfeccionamiento de las voladuras en el yacimiento de calizas XX aniversario (Palacios, 1997) y (Jaramillo, 1999), realizaron un análisis del agrietamiento del macizo y el tamaño de los bloques formados, así como una investigación analítica de la acción de la explosión en el macizo de rocas, a partir de la cual se plantearon los parámetros de la explosión, que fueron ajustados mediante explosiones experimentales, logrando disminuir la salida de pedazos grandes de forma considerable.

Hasta ahora se han seguido utilizando las metodologías de cálculo, donde no se considera la estructura del macizo rocoso en toda su complejidad, ni la acción de la explosión en el macizo de rocas. Es por ello que existe la necesidad de una metodología para el diseño de las voladuras que considere las propiedades de las rocas y las características mecánico-estructurales del macizo, las propiedades de las sustancias explosivas y la acción de la explosión en el macizo, que permita obtener la granulometría requerida de las rocas.

CAPITULO II
Capítulo II. Metodología para el diseño de los patrones de voladura.

A partir de los conocimientos acumulados y de las investigaciones realizadas por distintos autores en el campo de la mecánica de rocas y la acción de la explosión en el macizo, se propone la metodología para el diseño de los patrones de voladura para el arranque de las rocas en las canteras de áridos, la cual consta de los siguientes pasos:

- ✓ Determinación del diámetro de perforación y la SE a emplear;
- Determinación de las propiedades físicas de las rocas;
- Estudio del agrietamiento del macizo;
- Determinación analítica del estado tensional del macizo al explosionar cargas compactas.
- ✓ Diseño de los patrones de voladura;
- ✓ Ajuste experimental de los patrones de voladura.

II.1 Determinación del diámetro de perforación y de la sustancia explosiva a emplear.

Diámetro de perforación:

La elección del diámetro de los barrenos depende, fundamentalmente, de la producción que se requiere y de la resistencia de la roca y también hay que tener en cuenta el tipo de SE que se va a utilizar para lograr las cargas compactas, en el caso de las SE en cartuchadas, Tabla 5 (Manual de perforación y voladuras de rocas, 1994).

Diámetro del barreno	Producción anual					
(mm)	Rocas de fortaleza baja a media < 120 MPa	Rocas fuertes y muy fuertes > 120 MPa				
65 - 150	400 000 - 1 200 000	100 000 600 000				
200 - 311	300 000 - 4 000 000	300 000 - 1 000 000				

Tabla 5 Diámetro de perforación en función de la producción anual

Ing. António M. Pedro Alexandre

Sustancia explosiva a emplear:

En la elección de la sustancia explosiva a emplear hay que tener en cuenta (Manual de perforación y voladuras de rocas, 1994):

- Posibilidades reales de suministro;
- ✓ Precio del explosivo;
- ✓ Diámetro de carga;
- Características de las rocas;
- Volumen de roca a volar;
- Presencia de agua.

Posibilidades reales de suministro.

Las posibilidades reales de suministro hay que tenerlas en cuenta de acuerdo con la ubicación de los trabajos y los centros de suministro de estos y los accesorios, así como los tiempos de almacenamiento y las variaciones de las características explosivas de algunas sustancias.

Precio del explosivo.

Siempre hay que elegir el explosivo más barato dentro de aquellos que sean capaces de realizar un trabajo determinado. Al hablar de precio del explosivo hay que hacerlo expresando éste por unidad de energía disponible (unidad monetaria/ kJ) y no por unidad de peso. Hay que considerar que el objetivo de las voladuras es realizar el arranque con un costo mínimo y que en las rocas fuertes y muy fuertes, la perforación es muy costosa, por lo que la disminución de esta puede compensar la utilización de explosivos caros, pero más potentes.

Diámetro de carga.

Es necesario conocer el diámetro crítico de la SE, sobre todo en los explosivos que varían fuertemente la velocidad de detonación al variar el diámetro.

Actualmente en las canteras las SE generalmente empleadas: el ANFO, nitromiel, hidrogeles, emulsiones y ANFO pesado, en diámetros mayores de 100 mm, cargadas a granel, no presentan problemas, pero en diámetros menores de 100 mm,

el ANFO se recomienda utilizarlo en carga de columna y un explosivo potente como carga de fondo e iniciador. En rocas muy fuertes en diámetros pequeños y medios es más racional emplear los hidrogeles y emulsiones encartuchadas.

Características de las rocas.

Al elegir el explosivo es necesario considerar la estructura del macizo rocoso. En los macizos fuertes monolíticos se deben de utilizar explosivos con elevada densidad y velocidad de detonación que tendrán una mayor presión en la explosión y en los macizos muy agrietados son recomendables los explosivos con densidad y velocidad menores, que producen una menor presión en la onda de detonación.

Volumen de roca a volar.

Los volúmenes de roca a volar condicionan la forma de realizar la carga de la SE en los barrenos, cuando las cantidades de explosivo son grandes puede ser racional su utilización a granel con carga mecanizada.

Presencia de agua.

La presencia de agua en los barrenos implica que para utilizar las SE a base de nitrato de amonio (ANFO, Nitromiel) hay que tomar medidas especiales, como la desecación de estos, o el encartuchado de estas en fundas plásticas. En los casos de afluencia de agua no controlable, hay que utilizar hidrogeles o emulsiones.

II.2 Determinación de las propiedades físicas de las rocas.

Se determinan:

- ✓ Densidad;
- Masa volumétrica;
- Resistencia a compresión simple estática;
- Resistencia a tracción estática;
- Velocidad de las ondas elásticas longitudinales.

Densidad (p_o).

Se determina por el método picnométrico;

Ing. António M. Pedro Alexandre

Masa volumétrica (ρ).

Se determina por el método de la pesada hidrostática;

Límite de resistencia a la compresión simple estática σ_c^{ϵ}

Se determina en muestras cilíndricas de 50 mm de diámetro y 50 mm de altura, o en muestras cúbicas de 50 x 50 x 50 mm.

Límite de resistencia a tracción estática σ_t^e

Se determina por el método de flexión, utilizando muestras alargadas con sección transversal rectangular de 35 x 35 mm y longitud de 315 mm (Blanco, 1998).

$$\sigma_{t} = \frac{6Mf}{a^*b^*h^2}; \quad \text{MPa}$$

Donde:

Mf: Momento flector de rotura, Kg f /cm²

a: Coeficiente de flexión

b: Ancho de la muestra, cm.

h: Altura de la muestra, cm.

Velocidad de las ondas elásticas longitudinales (V_L).

se determina la velocidad de las ondas longitudinales en una varilla larga y fina y en muestras volumétricas (macizo).

Las muestras en varilla deben tener sección transversal de 4 x 4 mm y longitud de 80-120 mm.

Las muestras volumétricas deben tener sección transversal de 50 x 50 mm y longitud de más de 10 cm.

Se calculan:

- Coeficiente de Poisson;
- Módulo de elasticidad;
- Velocidad de las ondas transversales;
- Límite de resistencia a compresión dinámica ante cargas explosivas;

Límite de resistencia a tracción dinámica ante cargas explosivas.

Coeficiente de Poisson (μ).

A partir de las velocidades de las ondas elásticas longitudinales en varilla V_L^{ν} y en muestras volumétricas V_L^m se calcula el coeficiente de Poisson μ (Xanukaev, 1962):

$$\frac{V_L^{\nu}}{V_L^{m}} = \sqrt{\frac{1 - \mu - 2\mu^2}{1 - \mu}}$$

Módulo de elasticidad (E).

Con la velocidad de las ondas longitudinales en la varilla y la densidad de la roca se calcula el módulo de elasticidad E (Xanukaev, 1962):

$$E = \frac{\left(V_l^v\right)^2 * \rho}{g} , \quad \mathsf{MPa}$$

Donde:

ρ: Masa Volumétrica, Kg/m³

g: Aceleración de la gravedad, m/s²

Velocidad de las ondas elásticas transversales en las rocas (V_t) .

Con el módulo de elasticidad y el coeficiente de Poisson calculados y la masa volumétrica de las rocas, se determina la velocidad de las ondas transversales (Otaño, 1998).

$$V_t = \sqrt{\frac{E^*g_*}{\rho} \frac{1}{2(1+\mu)}}$$
, m/s

Límite de resistencia a compresión dinámica ante cargas explosivas $[\sigma_c^d]$.

El límite de resistencia a compresión dinámica se determina a partir del límite de resistencia a compresión estática y el coeficiente de dinamicidad que se determina a partir de la impedancia acústica de las rocas (Borovikov y Vaniagin, 1985) por la fórmula:

$$k_{dc} = 16.38 - 0.9 \times 10^{-11} \rho_0 V_L^2$$

Ing. António M. Pedro Alexandre

$$\left[\boldsymbol{\sigma}_{c}^{d}\right] = k_{dc} \left[\boldsymbol{\sigma}_{c}^{e}\right]$$

Límite de resistencia a tracción dinámica ante cargas explosivas $\left[\sigma_{i}^{d}\right]$.

El límite de resistencia a tracción dinámica se determina, al igual que en el caso anterior, por el límite de resistencia a tracción estática y el coeficiente de dinamicidad que se determina por la formula (Borovikov y Vaniagin, 1985):

 $k_{dt} = 4.81 - 0.97 \times 10^{-11} \rho_{\bullet} V_{L}^{2}$ - para rocas monolíticas no alteradas por procesos de intemperismo.

 $k = 3.44 - 0.2 \times 10^{-10} \rho_0 V_L^2$ - para rocas agrietadas y monolíticas alteradas por intemperismo.

$$\left[\boldsymbol{\sigma}_{l}^{d}\right] = k_{dt}\left[\boldsymbol{\sigma}_{l}^{e}\right]$$

II.3 Estudio del agrietamiento del macizo.

En el estudio del agrietamiento se determinan:

- Número de familias de grietas;
- En cada familia de grietas:
 - Rumbo;
 - Buzamiento;
 - Distancia entre grietas;
 - Abertura de las grietas;
 - Tipo de relleno.

El procesamiento de los datos medidos se realiza aplicando la proyección estereográfica, con el uso del Sofware Dip. versión 2.2 (Hoek and Brown, 1980).

II.4 Determinación analítica del estado tensional del macizo y las zonas de fragmentación al explosionar cargas compactas.

Los cálculos se realizan para un macizo isótropo, elástico, continuo y monolítico.

- Se determina la Presión en el frente de la onda de detonación de la SE (Otaño, 1998).

$$p = \frac{\rho_{se} (v_d)^2}{k+1}, Pa$$

Donde:

ρ_{se} – Densidad de la sustancia explosiva, Kg/m³

V_d – Velocidad de detonación de la SE, m/s

K - Índice de la adiabática de los productos de la explosión

$$K = f(\rho_{SE})$$

Se determina interpolando en la tabla.

Tabla 6 Índice de la adiabática de los productos de la explosión.

ρ _{se} g/cm ³	0,1	0,25	0,5	0, 7 5	1,0	1,25	1,75
k	1,3	1,6	2,2	2,8	3,0	3,2	3,4

- Se determina la velocidad de los productos de la explosión (Otaño, 1998).

$$v = \frac{v_d}{k+l}$$
, m/s

- Se determina el coeficiente de refracción acústica de las ondas (Borovikov y Vaniagin, 1974).

$$k_R = \frac{2\rho_o v_L}{\rho_{se} v_d + \rho_o v_L}$$

- Se determina el valor inicial de la presión en el frente de las ondas refractadas a la roca.

$$Pr^{[l]} = k_R \cdot p$$
, Pa

Ing. António M. Pedro Alexandre

- Se determinan los coeficientes empíricos A y m (Gogoliev, 1968).

Si
$$\frac{\Pr[1]}{\rho_o(v_L)^2} < 0,1$$
 entonces A = 3 y m = 3.
Si $0,1 \le \frac{\Pr[1]}{\rho_o(v_L)^2} \le 35$ entonces A = 5,5 y m = 5.

 Se determina la presión máxima (Pr) en el frente de las ondas refractadas en la pared del barreno (Gogoliev y otros, 1965).

Se calcula en dependencia de la relación entre la resistencia de onda de la sustancia explosiva $\rho_{se}v_d$ y la resistencia de onda de la roca ρ_vv_L .

Si $\rho_o v_L \ge \rho_{se} v_d$

$$\left\{\frac{Pr}{\rho_{o}}\left[1-\frac{1}{\left(A\frac{Pr}{\rho_{o}v_{L}^{2}}+1\right)^{\frac{1}{2}}}\right]^{\frac{1}{2}}=v-\frac{\sqrt{2k}(Pr-p)}{\left\{\rho_{se}(k+1)[Pr(k+1)-p(k-1)]^{\frac{1}{2}}\right\}}$$

Si
$$\rho_o v_L < \rho_{se} v_d$$

$$\left\{\frac{Pr}{\rho_o}\left[1-\frac{1}{\left(A\frac{Pr}{\rho_o v_L^2}+1\right)^{\frac{1}{m}}}\right]\right\}^{\frac{1}{2}} = v + \frac{2kv_d}{k^2-1}\left[1-\left(\frac{Pr}{p}\right)^{\frac{k-1}{2k}}\right]$$

Pr se puede determinar por uno de los métodos de aproximación o grafoanalíticamente.

- Se determina la densidad de la roca en el frente de la onda (ρ_r) , la velocidad de las partículas (V_R) y la velocidad del frente de la onda refractada (V_F) (Borovikov y Vaniagin, 1974):

$$\rho_{R} = \rho_{o} \left[I + \frac{A Pr}{\rho_{o} v_{L}^{2}} \right]^{1/m}, \quad \text{Kg/m}^{3}$$

$$v_{R} = \sqrt{\Pr\left(\frac{1}{\rho_{o}} - \frac{1}{\rho_{R}}\right)}, \quad \text{m/s}$$

$$v_{F} = \left[\frac{\Pr\left(\frac{1}{1 - \frac{\rho_{o}}{\rho_{R}}}\right)}{\frac{1}{\rho_{o}} \left(\frac{1}{1 - \frac{\rho_{o}}{\rho_{R}}}\right)} \right]^{\frac{1}{2}}, \quad \text{m/s}$$

 Se determina la máxima amplitud de las tensiones en la componente radial de las ondas al difundirse por el macizo alrededor de la carga (Borovikov y Vaniagin, 1974):

$$\sigma_{r\max} = \frac{Pr}{\left(\frac{r}{r}\right)^{1.08}}$$

Donde:

r – Distancia relativa del punto considerado del macizo al centro de la carga.

$$r = \frac{r}{R_c^e}$$

Donde:

r – Distancia del punto considerado del macizo al centro de la carga, m.

 R_c^{ϵ} – Radio de carga equivalente.

$$R_c^e = \tilde{R}_c \left(\frac{\rho_{se} Q_{se}}{\rho_p Q_p} \right)^{\prime}$$

Donde:

R_c - radio de la carga de SE utilizada;

Ing. António M. Pedro Alexandre

 ρ_{se} y ρ_{P} - densidad de la sustancia explosiva utilizada y patrón respectivamente

 $(\rho_P = 1500 \text{ Kg/m}^3);$

 Q_{SE} y Q_{P} calor de la explosión de la sustancia explosiva utilizada y patrón respectivamente (Q_{P} = 5950 kJ/Kg)

 $\lambda = 1/2$ Para cargas cilíndricas.

- Se determina la máxima amplitud de la componente tangencial de estas ondas (Borovikov y Vaniagin, 1985).

$$\sigma_{lmax} = \left(C_1 + C_2 \bar{r}\right)\sigma_{lmax}$$

Donde:

 C_1 y C_2 - son magnitudes adimensionales que dependen de la dureza acústica de las rocas.

$$C_1 = 0.09 + 0.228 * 10^{-7} \rho_o v_L$$

$$C_2 = (0.07 - 0.224 * 10^{-7} \rho_o v_L) * 10^{-2}$$

- Se determinan los radios de agrietamiento y descostramiento.

Mediante los gráficos de extinción de las tensiones radiales y tangenciales y el límite de resistencia a tracción dinámica, se determinan los radios relativos de agrietamiento (\bar{Rg}) y descostramiento (\bar{Rd}) (Fig.1), (Otaño, 1998).

Figura 1 Curvas de extinción de las tensiones radiales y tangenciales.

Con Rg y Rd y el radio de carga equivalente se determinan Rg y Rd

$$Rg = Rg^* R_c^e$$
$$Rd = Rd^* R_c^e$$

II.5 Diseño de los patrones de voladura.

Como los radios de agrietamiento y descostramiento se determinaron para un macizo monolítico, es necesario introducir la influencia del agrietamiento en el debilitamiento de las tensiones.

El coeficiente de debilitamiento de la amplitud de las tensiones con el agrietamiento en las direcciones de la línea de menor resistencia, de la línea de cargas y de la dirección de los barrenos depende de la resistencia acústica de las rocas $\rho_o V_L$ y del material de relleno de las grietas $\rho_{re} v_{re}$ y del valor suma de la abertura de las grietas en el sector considerado $\sum \delta_g$ (Borovikov y Vaniagin, 1985).

$$K_{db} = \left\{1 - 0, 2\left(\sum_{s} \tilde{\delta_g}\right) - 0, 12\left(\sum_{s} \delta_g\right)^2\right\} \gamma_r$$

Donde:

 δ_{g} - abertura de las grietas, m;

$$\sum \bar{\delta_g} = \frac{\sum \delta_g}{R_c^e}$$

 γ_r – Coeficiente que depende del material que rellena las grietas.

$$\gamma_{r} = 0.81* \rho_{o}V_{L} \frac{*10^{-7} (12.1*10^{6} + \rho_{re}V_{re})^{3} (\rho_{o}V_{L} - \rho_{re}V_{re})}{(\rho_{o}V_{L} + \rho_{re}V_{re})^{3} (12.1*10^{6} - \rho_{re}V_{re})}$$

Donde:

preVre – Densidad y velocidad de las ondas en el material que rellena las grietas.

- Se determina la línea de menor resistencia.

$$W_{\rm max} = \frac{Rg + Rd}{2}$$
, m

Donde:

 W_{max} - línea de menor resistencia para el macizo monolítico.

$$W = K_{db} * W_{max}$$
, m

Donde:

W - línea de menor resistencia para el macizo con un agrietamiento dado.

- Se determina la distancia entre cargas en la fila (Borovikov y otros, 1975).

La distancia entre cargas en la fila "a" se determina de la condición de obtener el corte por el plano entre las cargas vecinas en la fila como resultado de la superposición de las componentes tangenciales de las ondas de tensión, provocadas por la explosión de estas cargas. Aquí el límite de resistencia a tracción dinámica de la roca debe ser superado por el valor suma de la amplitud de las componentes tangenciales por los ejes de las cargas vecinas.

Se determina amax de la condición:

$$\sum_{i=2}^{2} \sigma_{i \max} = 2\sigma_{i \max} \left(\frac{a_{\max}}{2} \right) = \left[\sigma_{i}^{d} \right]$$

Ing. António M. Pedro Alexandre

para lo cual, en el gráfico de extinción de las tensiones tangenciales se determina la distancia relativa a la cual las tensiones tangenciales son iguales a la mitad del valor del límite de resistencia cortante dinámica de la roca y con ésta la distancia a_{max}.

Se determina la distancia r^* (Fig. 2) a la cual la suma de las tensiones tangenciales provocadas por la explosión de las cargas es mínima, según la ecuación (Borovikov y Vaniagin, 1985).

Figura 2 Gráfico para determinar la distancia r*

Donde:

 α Coeficiente que caracteriza la curvatura de crecimiento y caída de la amplitud de la tensión con el tiempo (s⁻¹)

Tiempo en el momento de llegada de la onda al punto dado (s)

- $\tau_{\rm H}$ Duración del crecimiento de la amplitud de la tensión hasta el máximo (s)
- β Coeficiente que caracteriza la duración de la fase positiva de la onda de tensión τ₊ (s). $τ_{H} = (a_1 + a_2 r) * R_c^e$

$$\beta = \frac{b_1 + b_2 * r}{R_c^e}$$

Ing. António M. Pedro Alexandre

$$\alpha = \beta \operatorname{Cot}(\beta \tau_{H})$$

$$\tau = \frac{2 * r_{\star} - a}{v_{L}} + 2\tau_{H}$$

$$a_{1} = (0,325 + 0,101 * 10^{-6} \rho_{o} V_{L}) * 10^{-3}, \text{ s/m}$$

$$a_{2} = (0,47 + 0,113 * 10^{-7} \rho_{o} V_{L}) * 10^{-4}, \text{ s/m}$$

$$b_{1} = 178 + 3,49 * 10^{-6} \rho_{o} V_{L}, \text{ s/m}$$

$$b_{2} = -125 - 0,218 * 10^{-7} \rho_{o} V_{L}, \text{ s/m}$$

Para determinar r^* grafoanalíticamente se toma como valor inicial a = a_{max} y se toman una serie de valores de r^* ($r^*=0.5a$; $r^*=0.55a$; $r^*=0.6a$; $r^*=0.7a$, etcétera) en dependencia del comportamiento de $F(r^*)$ con respecto a su valor nulo. Con estos valores se construye el gráfico $F(r^*)$. El punto de intercepción del gráfico con el eje r^* (Fig. 3) da el valor de r^* buscado.

Figura 3 Obtención de la distancia r*

Después de determinar r^* , correspondiente al valor suma mínimo de la amplitud de las componentes tangenciales de las ondas, se comprueba la condición de corte por la línea de colocación de las cargas.

$$\sum_{i=1}^{2} \sigma_{ii} = \left[\sigma_{i\max}\left(a - r^{\star}\right)\right]_{2} = \left[\sigma_{i}^{d}\right]$$

Sí $(\sigma_{rmax})_2 < [\sigma_r^d]$, se disminuye a en $\Delta a = (3-5)d_c$ y sí $(\sigma_{rmax})_2 > [\sigma_r^d]$ se aumenta a en esa mismas magnitudes.

Para los nuevos valores de $a = a_{max} + \Delta a$ se repiten los cálculos para determinar r^* y se comprueba la condición de corte.

Para determinar la distancia a_m para la cual se cumple la condición de corte para el macizo monolítico se construye el gráfico de la función $F(\sigma_t) = [\sigma_{t_{max}}(a - r^*)]_2$ en función de a_i (Fig. 4).

Como valor inicial se toma $a = a_{max}$. El punto de intersección de este gráfico con la recta $[\sigma_i^d] = const$ es la distancia buscada.

Figura 4 Obtención de am

Para el macizo con un agrietamiento dado será:

$$a = a_m * K_{db}$$

- Se calcula la longitud de relleno:

Para el cálculo de la longitud de relleno se toma la porción superior de la carga, con longitud $\Delta l_c = (4-5)d_c^{cil}$, de modo que se pueda considerar como una carga concentrada y se determina el radio de esta carga como si fuera una carga esférica (Borovikov y Vaniagin, 1985):

El radio de esta carga esférica será:

$$R_c^{esf} = \sqrt[3]{\frac{3}{16} \left(d_c^{cil}\right)^2 * \Delta l_c}$$

Se determina el radio de carga esférica equivalente.

$$\left(R_{c}^{esf}\right)^{e} = R_{c}^{esf} \left(\frac{\rho_{sc} * Q_{sc}}{\rho_{TEN} * Q_{TEN}}\right)^{\frac{1}{3}}$$

Se determina la longitud relativa de relleno.

$$\bar{l}_{r} = \frac{1}{2} * \left[1 + \left(\frac{\mu}{1 - \mu} \right)^{0.5} \right] * \left(\frac{2,25 * \rho o * V_{l}}{[\sigma_{l}^{d}]} \right)^{\frac{1}{2}}$$

Se determina la longitud de relleno.

$$l_r = l_r * \left(R_c^{esf} \right)^e$$

- Se determina la longitud de sobreperforación:

Para determinar la longitud de sobreperforación se utiliza el mismo principio que en el cálculo del relleno, considerando que en el laboreo del piso participa una parte de la carga cilíndrica equivalente a una carga esférica cuyos radios de agrietamiento y descostramiento se cortan al nivel del piso del escalón (Borovikov y Vaniagin, 1985).

Figura 5 Gráfico para la determinación de la longitud de sobreperforación.

> Se determina la línea de menor resistencia relativa por el piso W_P .

$$\bar{W}p = \frac{1}{2} * \left[\left(\frac{\mu}{1-\mu} \right) * \left(\frac{2,25 * \rho o * Vl}{\left[\sigma_{l}^{d}\right]} \right)^{\frac{1}{2}} \right] + \sqrt{\frac{2,25 * \rho o * Vl}{\left[\sigma_{l}^{d}\right]} * \left(\frac{\mu}{1-\mu} + \frac{1-2 * \mu}{(1-\mu) * \cos^{2}(\alpha)} \right)}$$

Donde:

 μ - coeficiente de Poisson de la roca;

 $\left[\sigma_{i}^{d}\right]$ - límite de resistencia a tracción dinámica de la roca, KPa

 α - ángulo de inclinación del paramento del escalón con respecto a la vertical, grados.

po - densidad de la roca, Kg/m³
 *V*I - velocidad de las ondas longitudinales, m/s

Se determina el radio de carga esférica convencional equivalente.

$$\left(R_c^{esf}\right)^e = \frac{W_P}{\bar{W}_P}$$

Donde:

 $W_P = W \cos \alpha$ - línea de menor resistencia por el piso, para ello se utiliza la W determinada con anterioridad al tener en cuenta el coeficiente de debilitamiento de las tensiones en las rocas agrietadas.

Se determina el radio real de esta carga esférica, con la sustancia explosiva que se empleará como carga de fondo.

$$R_c^{esf} = \left(R_c^{esf}\right)^e \left(\frac{\rho_{TEN} * Q_{TEN}}{\rho_{SE} * Q_{SE}}\right)$$

Se presupone que en el laboreo del piso del escalón actúa la parte inferior de la carga con longitud Δ*lc* = 2 * *ls*, por tanto la longitud de sobreperforación (*l_s*) para el macizo monolítico será:

$$ls = 0.5\Delta lc = \frac{8(R_c^{csf})^3}{3dc^2}$$

II.6 Ajuste experimental de los patrones de voladura.

Una vez diseñados los patrones de voladura, se comprueban experimentalmente y se ajustan, de ser necesario, los parámetros de los mismos.

Para validar la metodología propuesta se realizó una investigación analitica de la acción de la explosión en el macizo de rocas en la cantera El Cacao de la provincia de Granma, se diseñaron los patrones de voladura y se sometieron a investigación experimental.

CAPITULO III

Capítulo III. Caracterización del yacimiento El Cacao.

III.1 Ubicación geográfica.

El yacimiento se encuentra ubicado en el municipio Jiguaní de la provincia de Granma. La zona del yacimiento esta comprendida en el mapa topográfico de escala 1:50000 del I.C.G.C Hoja Baire 4976-IV.

Las coordenadas geográficas del centro del yacimiento son:
20⁰ 16¹ 42¹¹ Latitud Norte.
76⁰ 26¹ 15¹¹ Longitud Oeste.

Las coordenadas en el sistema Lambert de los extremos del yacimiento son: X = 541778 - 543299,6.Y = 179721,3 - 181572,6.

La cantera se encuentra a 1,5 Km. al norte del poblado de Charco Redondo, siendo el centro administrativo mas importante de la zona, además se encuentra enlazada con el pueblo de Santa Rita mediante una carretera de segundo orden (asfaltada) siendo la distancia que la separa del poblado mencionado anteriormente de 14 Km. La distancia que separa la cantera de la ciudad de Bayamo es de 32 Km (Vinent y otros, 1977).

III.2 Características geológicas del yacimiento.

El yacimiento El Cacao encaja en las secuencias calcáreas pertenecientes a la Formación Charco Redondo. Las calizas de esta formación yacen concordantemente sobre las secuencias litológicas pertenecientes al Grupo El Cobre de edad Paleoceno-Eoceno Medio y compuesta por rocas vulcanosedimentarias y grauvacas, con intercalaciones de basaltos, andesitas, dacitas, ignimbritas y riolitas, aunque también se dan lentes de calizas de poca potencia (unos 10 m). Estas secuencias rocosas no fueron alcanzadas por las perforaciones realizadas en el área investigada.

La edad de la formación Charco Redondo se sitúa en la parte alta del Eoceno Medio y es, por tanto, contemporánea con la formación Puerto Boniato. Tiene un espesor de 2-40 m. El corte esta formado por biocalcarenitas o calizas masivas, que localmente son arrecifales. En general presentan abundante fauna, y son de color beige, blanco amarillento y rosáceo. Las biocalcarenitas están constituidas por fragmentos de bivalvos, caparazones de foraminíferos e interclastos y pellets micríticos. El cemento es esparítico de calcita. Se interpreta que se generaron en un medio sedimentario de aguas marinas someras, templadas y de salinidad normal (Cazañas, X., y otros, 1998).

El yacimiento está compuesto por calizas organógenas detríticas pelitomórficas, con diferentes grados de recristalización, granulometría de los fragmentos y cantidad de material pelitomórfico. En ocasiones se observan intercalaciones de margas de color verde claro; además presentan cavernas rellenas de arcillas, aunque a veces están vacías.

Las intercalaciones que se presentan en el yacimiento están representadas por lentes de margas de color amarillento, grisáceo y en ocasiones con tonos verduzcos. Las arcillas que aparecen en el yacimiento poseen poca potencia y se encuentran rellenado oquedades (cavernas rellenas de arcillas) o cubriendo superficialmente las calizas en algunos sectores del depósito.

III.3 Propiedades físicas de las rocas.

Las propiedades másicas que se determinaron fueron:

Masa volumétrica: Para su determinación se utilizó el método de la pesada hidrostática;

Densidad: Para su determinación se utilizó el método picnómetrico;

Porosidad total: Se calculó con los valores de la densidad y la masa volumétrica;

Las propiedades de resistencia que se determinaron son:

Límite de resistencia a la compresión simple estática: Se determinó en muestras cúbicas de 50 x 50 x 50 mm;

Límite resistencia a tracción estática: Se determinó por el método de flexión, utilizando muestras rectangulares con sección transversal de 35 x 35 mm y longitud de 135 mm.

La propiedad acústica que se determinó fue la velocidad de las ondas longitudinales en muestras grandes y en varillas por medio del equipo de ultrasonido UK – 14 P. Teniendo ambas velocidades (V_L^{m}) y (V_L^{ν}) se calculó el coeficiente de Poisson (μ). Con la velocidad de las ondas en las varillas se calculó el módulo de Young (E). Con el módulo de Young y el coeficiente de Poisson se calculó la velocidad de las ondas transversales (V_L)

Los resultados de las propiedades físicas de las rocas que se utilizan en este trabajo, fueron obtenidos por el autor en el laboratorio del ISMMM.

Algunas propiedades ya determinadas como: la densidad, masa volumétrica, resistencia a compresión y la porosidad de la roca, fueron determinadas nuevamente por el autor, con el objetivo de ampliar o mejorar la información existente sobre estas propiedades y para obtener información de otras que no habían sido determinadas y que se consideran importantes en la investigación. En todos los casos, la confiabilidad de los resultados está por encima del 84 %.

Para determinar las propiedades, el autor realizó el muestreo siguiendo un criterio aleatorio y cuidando que las mismas fuesen representativas.

Como no se conocía la dispersión o variación de los parámetros a estudiar para determinar el número de muestras pequeño (Herrera, F.; Kostrikov, P. y Diaz Duque, 1985), se tomó un número de estas para cada una de las propiedades a determinar como sigue:

Para densidad 10 muestras, para masa volumétrica 10 muestras, para resistencia a compresión 10 muestras, para resistencia a tracción 5 muestras y para la velocidad de las ondas longitudinales 5 muestras y con los resultados de los ensayos se determinó el índice de exactitud aplicando la distribución t de Student para probabilidad $\gamma = 0.95$. En todos los casos dio un índice de exactitud menor de 3 %, por lo que se consideró que el número de muestras ensayadas era suficiente para obtener valores confiables. Los resultados se muestran en la tabla 7

ρ _ο	ρ	P	[σ _c ^e]	$[\sigma_t^e]$	V _⊥ ^m	V _L ^v	μ	E	V _t
(Kg/m³)	(Kg/m ³)	(%)	(MPa)	(MPa)	(m/s)	(m/s)		(MPa)	(m/s)
2660	2640	0,91	80,0	7,27	6495	6030,3	0,23	9786	3 <mark>84</mark> 7,12

Tabla 7 Resultados de las propiedades de las rocas.

Los resultados de los cálculos de la valoración estadística se dan en el anexo 2.

III.3.1 Cálculo de la resistencia a cargas dinámicas producidas por la explosión de la roca (Vorobikok y Vaniagin, 1985).

Coeficiente de dinamicidad para la resistencia a compresión.

$$k_{dc} = 16.38 - 0.9 \times 10^{-11} \rho_0 V_L^2$$

Límite de resistencia a compresión dinámica.

$$\left[\boldsymbol{\sigma}_{c}^{d}\right] = k_{dc} \left[\boldsymbol{\sigma}_{c}^{e}\right]$$

Coeficiente de dinamicidad para la resistencia a tracción.

$$k_{dl} = 4.81 - 0.97 \times 10^{-11} \rho_0 V_1^2$$

Límite de resistencia a tracción dinámica.

$$\left[\boldsymbol{\sigma}_{t}^{d}\right] = k_{dt} \left[\boldsymbol{\sigma}_{t}^{e}\right]$$

Tabla No.8 Resultados de los coeficientes de dinamicidad y límites de resistencia a compresión y tracción dinámica.

Kdc	Kdt	[σ _c ^d] , Mpa	[σt ^d], MPa
15,37	3,722	1229,6	27,0

III.4 Estudio del agrietamiento.

En el trabajo de campo, se midieron el acimut, el buzamiento, la abertura, el espaciamiento entre grietas y el tipo de relleno.

En el anexo 3 se dan los resultados de las mediciones.

El procesamiento fue realizado aplicando las técnicas de la proyección estereográfica para esto fue usado el software Dip. versión 2.2 (Hoek and Brown, 1980), que consiste en procesar los datos medidos en el campo y obtener el comportamiento de las grietas en el macizo. Los polos correspondientes a las superficies de grietas de los datos geológicos de campo son ploteados y sus círculos mayores son utilizados para analizar estos datos. De este modo las técnicas de la proyección estereográfica nos brinda la información de las distintas familias de grietas que intervienen en el macizo (tablas 9 y 10). Finalmente se realiza la interpretación de la salida gráfica dada por el diagrama de planos.

Tesis Doctoral

Figura 7 Diagrama de plano de las familias de grietas presentes en los sector I y III.

Dirección de las grietas:

Rumbo

F1: N37E

F2: N27W

F3: N60W

Tabla 9 Resultados del procesamiento de las mediciones de grietas efectuadas en los Sectores I y III.

Familia	lia Buz./ Acimut Abertura Espaciamiento		Tipo de relleno	
	(grados)	(cm)	(m)	
1	81/307	0,6	0,65	Arcilla
2	78/244	1,6	1,50	Arcilla
3	10/30	0,05	0,52	Arcilla

Figura 8 Diagrama de plano de las familias de grietas presentes en el sector II

Dirección de las grietas:

Rumbo

F1: N25E

F2: N27W

F3: N29W

Tabla 10 Resultados del procesamiento de las mediciones de grietas efectuadas en el Sector II.

Familia	Buz./ Acimut	Abertura	Espaciamiento	Tipo de relleno
	(grados)	(cm)	(m)	
1	85/295	0,75	0,74	Arcilla
2	79/244	1,45	1,65	Arcilla
3	8/60	0,04	0,68	Arcilla

III.5 Patrones de voladura utilizados en la cantera El Cacao.

Diámetro del barreno, mm	a, m	W, m	b, m	H, m	Lr, m	Ls, m	Qc, Kg	Qf, Kg
115	2,0	2,5	2,5	12	1,3	1,0	75	24

Tabla 11 Patrones de voladura utilizados en los sectores I y III

Tabla 12 Patrones de voladura utilizados en los sectores I y III

Diámetro del barreno, mm	a, m	W, m	b, m	H, m	Lr, m	Ls, m	Qc, Kg	Qf, Kg
115	2,0	2,3	2,3	12	1,3	1,0	75	24

Tabla 13 Patrones de voladura utilizados en el sector II

Diámetro del barreno, mm	a, m	W, m	b, m	H, m	Lr, m	Ls, m	Qc, Kg	Qf, Kg
115	3,0	3,5	3,0	15	1,3	1,0	100	24

De las voladuras proyectadas por la empresa, escogimos las realizadas en los sectores I y II de la cantera. En el sector I se dan los resultados (Tabla 14) de dos voladuras realizadas con diferentes redes de perforación, mientras en el sector II (tabla 15) se da el resultado promedio de tres voladuras realizadas con la misma red de perforación. En todos los casos se utilizó como carga de fondo la Amonita-R No.4 y como carga de columna el Amitrex-B.

Re	d de perfora	ción	Porcentaje de pedazos de rocas
			sobredimensionados
a, m	W, m	b, m	(% >1 m ³)
2,0	2,3	2,3	15,13
2,0	2,5	2,5	14,55

Tabla 14 Resultados de los pedazos de rocas sobredimensionados en el sector I

Tabla 15 Resultados de los pedazos de rocas sobredimensionados en el sector II

Re	d de perfora	ición	Porcentaje de pedazos de rocas
a, m	W, m	b, m	sobredimensionados (% >1 m ³)
3,0	3,5	3,5	17

CAPITULO IV

Capítulo IV. Investigación analítica del estado tensional del macizo al explosionar cargas compactas en la cantera El Cacao.

IV.1 Características de las sustancias explosivas a investigar.

Para el estudio analítico del estado tensional del macizo al explosionar cargas compactas en la cantera de áridos El Cacao, realizamos el mismo con cuatro sustancias explosivas: Amitrex-B (Unión Química, 2004), Amonita-R No.4 (specifications for Amonite-R No.4, 2005), Tectron 100 (ULAEX, 1999) y DynoAnfo (ULAEX, 2003), por ser estas las sustancias explosivas con mayor disponibilidad en el país.

	Densidad de la sustancia explosiva, pse (Kg / m ³)	860
	Velocidad de detonación, Vd (m / s)	3000
	Calor de explosión, Q (kJ / Kg)	2934,9
Amitrex - B	Peso por bolsa, q' (g)	25
	Presión de detonación, Pd (MPa)	1990
	Índice de la adiabática de los productos de la	
	explosión, K	2,89
	Densidad de la sustancia explosiva, pse (Kg / m ³)	1000
	Velocidad de detonación, Vd (m / s)	3700
	Calor de explosión, Q (kJ / Kg)	4312,4
Amonita – R	Peso del cartucho, q´ (g)	150
No.4	Diámetro del cartucho, dc (mm)	32
	Longitud del cartucho, lc (mm)	150
	Presión de detonación, Pd (MPa)	3422
	Índice de la adiabática de los productos de la	
	explosión, K	3,0

Tabla 16 Características de las sustancias explosivas

Tabla 16 Continuación.

	Densidad de la sustancia explosiva, pse (Kg / m ³)	1150
Tectron 100	Velocidad de detonación, Vd (m / s)	6200
	Calor de explosión, Q (kJ / Kg)	3098,2
	Peso del cartucho, q' (g)	4167
	Diámetro del cartucho, dc (mm)	100
	Longitud del cartucho, lc (mm)	460
	Presión de detonación, Pd (MPa)	10730
	Índice de la adiabática de los productos de la	
	explosión, K	3,12
DynoAnfo	Densidad de la sustancia explosiva, pse (Kg / m ³)	820
	Velocidad de detonación, Vd (m / s)	3600
	Calor de explosión, Q (kJ / Kg)	3818,4
	Peso por bolsa, q´ (g)	25
	Presión de detonación, Pd (MPa)	2753
	Índice de la adiabática de los productos de la explosión, K	2,86

IV.2 Presión máxima en el frente de las ondas refractadas en la pared del barreno.

Para la determinación analítica del estado tensional del macizo al explosionar cargas compactas, según la metodología propuesta, se determinaron:

- > Presión en el frente de la onda de detonación de la sustancia explosiva.
- Velocidad de los productos de la explosión.
- > Coeficiente de refracción acústica de las ondas.
- > Valor inicial de la presión en el frente de las ondas refractadas a la roca.
- Coeficientes empíricos A y m.
- Presión máxima en el frente de las ondas refractadas en la pared del barreno.
- > Densidad de la roca en el frente de la onda refractada.
- > Velocidad de las partículas de la onda refractada.
- > Velocidad del frente de la onda refractada.

Los resultados de los mismos se dan en la tabla 17.

Tabla 17 Parámetros de las ondas de detonación y de choque refractadas al macizocon cargas compactas.

Sustancia explosiva	P (MPa)	V (m/s)	Kr	Pr ¹ (MPa)	A	m	Pr (MPa)	ρ _R (Kg/m³)	V _R (m/s)	V _f (m/s)
Amitrex-B	1990	771,208	1,740	3462	3	3	1 4100	3252	732,195	7240
Amonita- R No.4	3423	925, <mark>0</mark> 0	1,647	5638	3	3	175 <mark>3</mark> 8	3024	890,579	7403
Tectron 100	10730	1504,85	1,420	15236	5,5	5	32900	3223	1 470,0	8413
DynoAnfo	2753	932,642	1,708	4703	3	3	17484	3036	888,135	7401

Ing. António M. Pedro Alexandre

IV.3 Cálculo de las tensiones en el macizo rocoso provocadas por la detonación de una carga compacta de sustancia explosiva, al difundirse la onda refractada por el mismo.

Para el cálculo de las tensiones en el macizo rocoso provocadas por la detonación de una carga compacta de sustancia explosiva, al difundirse la onda refractada por el mismo, según la metodología propuesta se calculan:

- Radio de carga equivalente.
- Distancia relativa del punto considerado del macizo al centro de la carga.
- Máxima amplitud de las tensiones en la componente radial de las ondas al difundirse por el macizo alrededor de la carga.
- Máxima amplitud de las tensiones en la componente tangencial de las ondas.

Los resultados de las mismas aparecen en las tablas de la 18 a la 21. Las figuras 9, 10, 11 y 12 nos permiten determinar grafoanalíticamente el radio relativo de grietas y el radio relativo de descostramiento.

R _c ^e	No.	r,m	- r	σ _{r max} , MPa	σ _{t max,} MPa
0,031	1	0,0575	1,855	7234	3458
	2	0,124	4	3155	1487
	3	0,248	8	1492	684,157
	4	0,372	12	963,171	429,45
	5	0,5	16,129	699,847	302,881
	6	1,0	32,258	331,048	126,345
	7	1,5	48,387	213,655	70,618
	8	2,0	64,516	156,595	43,752
	9	2,5	80,645	123,06	28,09
	10	3,0	96,774	101,065	17,902
	11	3,5	112,903	85,565	10,782
	12	4,0	129,032	74,074	5,547
	13	4,5	145,161	65,226	1,549
	14	5,0	161,29	58,211	
	15	6,0	193,548	47,807	
	16	7,0	225,806	40,475	
	17	8,0	258,065	35,039	
	18	9,0	290,323	30,854	
	19	10	322,581	27,535	
	20	11	354,839	24,842	
	21	12	387.097	22,614	

Tabla 18 Resultados del cálculo del estado tensional en el macizo rocoso provocado por la detonación de una carga compacta de Amitrex - B
Resultados de las curvas de extinción de las tensiones producidas por la explosión en el macizo rocoso.

Figura 9 Curvas de extinción de las tensiones con el Amitrex-B.

Con los radios relativos de grietas (Rg) y descostramiento (Rd) y el radio de carga equivalente (R_c^e) se determinan los radios de grietas (Rg) y descostramiento (Rd).

 $Rg = Rg^* R_c^e$ $Rd = Rd^* R_c^e$

Ing. António M. Pedro Alexandre

R ^e _c	No.	r,m	-	σ _{r max} , MPa	σ _{t max} , MPa
	1	0,0575	1,438	11850	5680
	2	0,16	4	3924	1849
	3	0,32	8	1856	851,07
	4	0,48	12	1198	534,153
	5	0,5	12, 5	1146	509,151
	6	1,0	25	542,257	219,43
	7	1,5	37,5	349,966	127,75
	8	2,0	50	256,503	83,469
	9	2,5	62,5	201,572	57,606
	10	3,0	75	165,544	40,75
	11	3,5	87,5	140,156	28,947
	12	4,0	4,0 100 121,333		20,252
0,04	13	4,5	112,5	106,84	13,599
	14	5,0	125	95,349	8,358
	15	6,0	150	78,307	
	16	7,0	175	66,298	
	17	8,0	200	57,394	
	18	9,0	225	50,539	
	19	10	250	45,103	
	20	11	265	40,691	
	21	12	300	37,042	
	22	13	325	33,974	
	23	14	350	31, 3 61	
	24	15	375	29,109	
	25	16	400	27,15	
	26	17	425		

Tabla 19 Resultados del cálculo del estado tensional en el macizo rocosoprovocado por la detonación de una carga compacta de Amonita – R No.4

Tabla 20 Resultados del cálculo del estado tensional en el macizo rocoso provocado por la detonación de una carga compacta de Tectron 100.

R _c	No.	r,m	- r	σ _{r max} , MPa	σ _{t max} , MPa
	1	0,0575	1,597	19840	9500
	2	0,136	4	7362	3469
	3	0,272	8	3482	1597
	4	0,408	12	2247	1002
	5	0,5	13,889	1919	844,134
	6	1,0	27,778	907,818	359,364
	7	1,5	41,667	585,896	206,134
	8	2,0	55,556	429,424	132,176
	9	2,5	69,444	337,466	89,014
	10	3,0	83,333	277,149	60,902
	11	3,5	97,222	234,644	41,231
	12	4,0	111,111	203,132	26,75
	13	4,5	125	178,868	15,68
	14	5,0	138,889	159,63	6,965
	15	6,0	166,667	131,099	
	16	7,0	194,444	110,994	
0,036	17	8,0	222,222	96,087	
	18	9,0	250,0 84.61		
	19	10	277,778	75,51	
4	20	11	305,556	68,124	
	21	12	333,333	62,014	
	22	13	361,111	56,878	
	23	14	388,889	52,503	
	24	15	416,667	48,733	
	25	16	444,444	45,452	
	26	17	472,222	42,571	
	27	18	500,0	40,023	
	28	19	527,778	37,753	
	29	20	555,556	35,718	
	30	21	583,333	33,885	
	31	22	611,111	32,225	
	32	23	638,889	30,714	
	33	24	666,667	29,334	
-	34	25	694,444	28,069	
	35	26	722,222	26,905	

Ing. António M. Pedro Alexandre

Figura 11 Curvas de extinción de las tensiones con el Tectron 100.

R ^e _c	No.	r, m	- <i>r</i>	σ _{r max} , MPa	σ _{t max} , MPa
	1	0,0575	1,691	9914	4744
	2	0,136	4	3912	1843
	3	0,272	8	1851	848,777
	4	0,408	12	1194	532,369
	5	0,5	14,706	958,841	419,294
	6	1,0	29,412	453,56	177,194
	7	1,5	44,118	292,722	100,713
	8	2,0	58,823	214,551	63,816
	9	2,5	73,529	168,603	42,29
	10	3,0	88,235 138,468		28,276
	11	3,5	102,94	117,233	18,475
	12	4,0	117,65	101,485	11,261
0,034	13	4,5	132,35	89,367	5,752
	14	5,0	147,06	79,753	1,414
-	15	6,0	176,471	65,499	
	16	7,0	205,882	55,454	
	17	8,0	235,294	48,007	
	18	9,0	264,706	42,272	
	19	10	294,118	37,726	
	20	11	323,529	34,036	
	21	12	352,941	30,983	
	22	13	382,353	28,417	
	23	14	411,765	26,231	
	24	15	441,176	24,348	

Tabla 21 Resultados del cálculo del estado tensional en el macizo rocoso provocado por la detonación de una carga compacta de DynoAnfo.

Figura 12 Curvas de extinción de las tensiones con el DynoAnfo.

Sustancia Explosiva	Rg	Rd	<i>Rg</i> , m	<i>Rd</i> , m
Amitrex – B	81	323	2,51	10
Amonita – R No. 4	88	400	3,52	16
Tectron 100	101	722	3,64	22
DynoAnfo	88,3	384	3,0	13,06

Tabla 22 Resultados de los radios.

Se determinó el coeficiente de debilitamiento de la amplitud de las tensiones con el agrietamiento en la dirección de la línea de menor resistencia, en la dirección de la línea de colocación de las cargas. Los resultados de los mismos aparecen en las tablas 23 y 24.

Tabla 23 Resultados de los coeficientes de debilitamiento de las tensiones de las ondas debido al agrietamiento en la dirección de la línea de menor resistencia.

Sustancia	ρ_{re}	V _{re}	Y,	$\sum \delta_{g}$	$\Sigma \bar{\delta}$	K _{db}
Explosiva	(Kg/m ³)	(m/s)		(m)	Z g	
Sec	ctores I y III	"Grietas	rellenas	con arc	cilla"	
Amitrex-B			_	0,064	2,065	0,511
Amonita-R No.4	1700	1500	0,871	0,112	2,800	0,383
Tectron 100				0,128	3,556	0,251
DynoAnfo				0,080	2,353	0,461
	Sector II "G	rietas rel	lenas co	on arcilla	a"	
Amitrex-B				0,060	1,935	0,534
Amonita-R No.4	1700	1500	0,871	0,105	2,625	0,414
Tectron 100				0,1275	3,542	0,254
DynoAnfo				0,0825	2,426	0,448

Tabla 24 Resultados de los coeficientes de debilitamiento de las tensiones de las ondas debido al agrietamiento en la dirección de la línea de colocación de las cargas.

Sustancia	ρ_{re}	V _{re}	Yr	$\sum \delta_{g}$	$\sum \delta$	K _{db}			
Explosiva	(Kg/m ³)	(m/s)		(m)	- g				
Sectores I y	Sectores I y III "cuando las grietas están rellenas con arcilla"								
Amitrex-B				0,066	2,129	0,500			
Amonita-R No.4	1700	1500	0,871	0,096	2,400	0,453			
Tectron 100				0,096	2,667	0,406			
DynoAnfo				0,072	2,118	0,502			
	Sector II "G	rietas rel	lenas co	on arcilla	a"				
Amitrex-B				0,058	1,871	0,545			
Amonita-R No.4	1700	0,871	0,871	0,087	2,175	0,492			
Tectron 100				0,087	2,417	0,450			
DynoAnfo				0,0725	2,132	0,499			

IV.4 Determinación de los parámetros de las voladuras.

Línea de menor resistencia para el macizo monolítico (W_{max}).

$$W_{\text{max}} = \frac{Rg + Rd}{2}$$

Tabla 25 Resultados de la línea de menor resistencia para el macizo monolítico.

Sustancia Explosiva	W máx, m
Amitrex - B	6,25
Amonita – R No.4	9,76
Tectron 100	14,8
DynoAnfo	8,00

Línea de menor resistencia para el macizo con un agrietamiento dado.

$$W = W_{\rm max} * Kdb$$

Los resultados de la línea de menor resistencia para el macizo con un agrietamiento dado, se dan en la tabla 26.

Tabla 26 Resultados de la línea de menor resistencia para el macizo con un agrietamiento dado.

SE W, m					
Sectores I y III "Grietas rellenas con arcilla"					
Amitrex-B	3,2				
Amonita-R No.4	3,7				
Tectron 100	3,7				
DynoAnfo	3,6				
Sectores II "Griet	as rellenas con arcilla"				
Amitrex-B	3,3				
Amonita-R No.4	4,0				
Tectron 100	3,8				
DynoAnfo	3,6				

Distancia entre cargas en la fila.

En los gráficos de extinción de las componentes tangenciales se determinan las coordenadas de los puntos de mínimas tensiones (r°) con las diferentes sustancias explosivas. Estos puntos se determinan en los gráficos de la función F(r°) en su intersección con el eje r- (figuras 13, 14, 15 y 16) cuyos resultados se dan en la tabla 27.

Figura 13 Resultado de r * con el Amitrex – B

Figura 16 Resultado de r * con el DynoAnfo

Tabla 27 Resultados de la distancia r*

Sustancia Explosiva	r*, m
Amitrex - B	4,65
Amonita - R No.4	6,68
Tectron 100	7,55
DynoAnfo	5,30

Con las coordenadas de los puntos de mínimas tensiones, se determina la distancia entre cargas en la fila para macizos monolíticos (a_m) en los gráficos de la función $F(\sigma_t)$ de las tensiones tangenciales en el punto con coordenadas (a-r-) en función de a (figuras 17, 18, 19 y 20) cuyos resultados se dan en la tabla 28.

Figura 17 Obtención de am con el Amitrex - B

Figura 19 Obtención de a_m con el Tectron 100

Figura 20 Obtención de am con el DynoAnfo.

Tabla 28Resultados de la distancia entre cargas en la fila (am) para el macizo
monolítico.

Sustancia Explosiva	a _m , m
Amitrex-B	7,3
Amonita-R No.4	10,1
Tectron 100	11,0
DinoAnfo	8,12

Aplicando el coeficiente de debilitamiento de las tensiones se obtuvieron las distancias entre cargas en la fila para el macizo agrietado en los diferentes sectores de la cantera (tabla 29).

Tabla 29 Resultados de la distancia entre cargas en la fila para el macizo con un agrietamiento dado.

SE	a, m					
Sectores I y III "grietas rellenas con arcilla"						
Amitrex-B	3,7					
Amonita-R No.4	4,6					
Tectron 100	4,5					
DynoAnfo	4,1					
Sectores II "g	rietas rellenas con arcilla"					
Amitrex-B	4,0					
Amonita-R No.4	5,0					
Tectron 100	4,95					
DynoAnfo	4,1					

Determinación de la longitud de relleno:

Se determinó la longitud de relleno (l_r) para cada una de las sustancias explosivas (tabla 30).

Sustancia Explosiva	$\left(R_{c}^{esf}\right)^{c}$	\bar{l}_s	<i>l_s</i> , m
Amitrex-B	0,0739	21,62	1,60
Amonita-R No.4	0,0883	21,62	1,90
Tectron 100	0,0828	21,62	1,80
DinoAnfo	0,07937	21,62	1,72

Tabla 30 Longitud de relleno.

Determinación de la longitud de sobreperforación:

Se determinó la longitud de sobreperforación (l_s) para cada una de las sustancias explosivas (tabla 31).

Tabla 31 Longitud de sobreperforación.

Sustancia Explosiva	Sectores I y III	Sector II
	Ls,	m
Amitrex-B	1,6	1,7
Amonita-R No.4	1,4	1,8
Tectron 100	1,7	1,85
DinoAnfo	1,8	1,8

CAPITULO V

Capítulo V: Investigación experimental de los patrones de voladura diseñados en la cantera El Cacao.

V.1 Patrones de voladura utilizados en la investigación.

Para la investigación experimental en la cantera se diseñaron los patrones de voladura con una carga compuesta de dos sustancias explosivas, Amitrex-B como carga de columna y Amonita-R No.4 como carga de fondo, por ser estas las sustancias explosivas utilizadas y disponibles en la cantera.

En dependencia del agrietamiento, se utilizaron dos redes de perforación, una para los sectores I y III y otra para el sector II.

Diámetro	а	W	b	Н	Lr	Ls	Lcf	Lt	Lcc	Qc	Qf
(mm)	(m)	(m)	(Kg)	(K g)							
115	37	3.2	32	12	1.6	1 4	2.8	13.4	8.8	80	14 7
113	5,1	5,2	5,2	12	1,0	1,4	2,0	10,4	0,0	00	14,7

Tabla 32 Patrones de voladura utilizados en los Sectores I y III.

Tabla 33 Patrones de voladura utilizados en el sector II.

Diámetro	а	W	b	Н	Lr	Ls	Lcf	Lt	Lcc	Qc	Qf
(mm)	(m)	(m)	(Kg)	(Kg)							
115	4,0	3,3	3,3	15	1,6	1,8	3,6	16,8	11,6	103	19

Para determinar el número de explosiones experimentales necesarias, al no conocer la dispersión del porcentaje de pedazos sobredimensionados como parámetro a determinar, para evaluar la viabilidad de los patrones diseñados, se realizaron 3 voladuras experimentales con cada uno de ellos y se determinó el porcentaje de pedazos sobredimensionados. Con estos resultados se determinó el número de voladuras necesarias para un índice de exactitud de 3 %, utilizando la distribución t de Student para una probabilidad de $\gamma = 0.95$. Los resultados obtenidos indican que para los sectores I y III es suficiente con 3 voladuras y que para el sector II son necesarias 6 voladuras (ver anexo 2). Se decidió realizar 6 voladuras en cada sector

V.2 Análisis de la granulometría obtenida.

Para la determinación del porcentaje de pedazos con dimensiones superiores a 1 m³ que son los considerados en este caso como pedazos sobredimensionados se utilizó el método lineal, realizando mediciones con cinta en la superficie del montón, estableciendo una relación entre la suma de la longitud de los pedazos grandes que caen en la línea de medición y la longitud total de esta línea, obteniéndose los resultados que se dan el la tabla 34.

Sector	Porcentaje
Г	7,71
Щ	7,42
Ш	7,90

Tabla 34 Resultados del porcentaje de pedazos sobredimensionados.

V.3 Ajuste de los patrones de voladura.

Una vez valorados los resultados de las voladuras experimentales, se consideró que con los parámetros de diseño empleados se obtenían resultados de granulometría aceptables y que por tanto no era necesario el reajuste de esos patrones.

V.4 Valoración económica.

Con los patrones de voladura empleados en los tres sectores de la cantera y su comparación con los patrones empleados hasta ahora allí se obtienen los siguientes resultados:

Parámetros	Patrones empleados en la cantera	Patrones propuestos		
Rendimiento de arranque, m ³ /m.	4,48	10,6		
Consumo específico de SE, Kg/m ³	0,4-0,5	0,67		
Porcentaje de pedazos sobredimensionados, %	14,55	7,71		
	15,13	7,90		

Tabla 35 Sectores | y III

Tabla	36	Sector	

Parámetros	Patrones empleados en la cantera	Patrones propuestos
Rendimiento de arranque, m ³ /m	10,5	11,80
Consumo específico de SE, Kg/m ³	0,4-0,5	0,62
Porcentaje de pedazos sobredimensionados, %	17	7,42

Como se observa en las tablas con los patrones diseñados según la metodología propuesta se aumenta el rendimiento de arranque y al ajustar el consumo especifico de explosivo al requerido de acuerdo a las propiedades de las sustancias explosivas empleadas y las características mecánico-estructurales del macizo se reduce considerablemente la salida de pedazos sobredimensionados, lo que evidentemente conlleva una disminución de los gastos de perforación y fragmentación secundaria.

V.5 Valoración de impacto ambiental.

La ejecución de las voladuras en las canteras de áridos ejercen impactos en el medio circundante al producir emisión de polvo durante la perforación y en la explosión y de gases en la explosión, así como vibraciones del terreno y onda aérea que se traducen en ruido y daños a las personas y edificaciones. La metodología propuesta para el diseño de los patrones de voladura coadyuva a la disminución de la perforación y al uso más racional de la energía de la explosión en la fragmentación de las rocas, lo que disminuye la magnitud de las vibraciones y la onda aérea.

CONCLUSIONES

Conclusiones.

- El estudio de las investigaciones realizadas con anterioridad permitió establecer una metodología para el diseño de los patrones de voladura en la cual se consideran las propiedades de la roca, las características estructurales del macizo, las propiedades de las sustancias explosivas y la acción de la explosión en el macizo de rocas.
- En la metodología propuesta se utilizan por primera vez los radios de agrietamiento y descostramiento para determinar los parámetros de los patrones de voladura: línea de menor resistencia, distancia entre taladros en la fila, longitud de relleno y longitud de sobreperforación.
- 3. Los trabajos experimentales realizados en la cantera El Cacao con los patrones de voladura diseñados con la metodología propuesta, permiten disminuir la salida de pedazos con dimensiones mayores que las necesarias para la tecnología instalada. En este caso se disminuyó desde 14,55 % hasta 17 %, que se obtenía con los patrones utilizados, hasta 7,42 a 7,90 % para los distintos patrones diseñados según la metodología propuesta.

RECOMENDACIONES

Recomendaciones.

- 1. Investigar la utilización de esta metodología con cargas compactas en otros tipos de macizos.
- 2. Investigar otras construcciones de cargas y ajustar a ellas esta metodología.

REFERENCIAS BIBLIOGRAFICAS

REFERENCIAS BIBLIOGRÁFICAS.

- 1. Ash R.L.: "The design of blasting roundes" chafter 7.3. Surface mine. AIME, 1968.
- Blanco Torrens, R.: Elementos de la mecánica de los macizos rocosos, Editorial Félix Varela, La Habana, 1998.
- 3. Borovikov, V.A. y I.F. Vaniagin.: Física de la fragmentación explosiva. IML, 1974.
- Borovikov, V.A. y I.F. Vaniagin.: Técnica y tecnología de los trabajos con explosivos. Leningrado, 1985.
- Borovikov, V.A. y otros. Elección de la distancia entre los barrenos vecinos en la explosión de contorno. TSNIEI UGUL No.3, 1975.
- Blaisdell, E.A.: Statistics in Practice. Saunders Collage Publishing. Orlando-Florida, 1993, pp.653.
- 7. Berta, G.: L'Explosivo Strumento Di Lavro. Italexplosivi, 1985.
- 8. Blasov O.E y C.A. Smirnov. Fundamentos del cálculo de la fragmentación de las rocas por la explosión. Editorial Academia de Ciencias de la URSS, 1962.
- Colectivo de autores. Manual de perforación y voladuras de rocas. Instituto tecnológico geominero de España. Serie: tecnología y seguridad minera, Madrid, 1994.
- Cazañas, X. y otros.: Un modelo de depósito vulcanogenico de manganeso del arco vulcánico Paleógeno de Cuba: el ejemplo de la región Cristo-Ponupo-Los Chivos. Acta Geológica Hispánica. Vol.33, No. 1-4, 239-276 p, 1998.
- Creer, J.D. y Millar, R.B.: Statistics for Business. Data Análysis and Modelling. PWS-Kent Publishing Company. Boston, 1991, pp.811.
- Colectivo de autores. Manual de ingeniería de taludes. Instituto Tecnológico GeoMinero de España. Gráficas Monterreina, Madrid, 1991.
- Colectivo de autores. Manual de áridos. Prospección, explotación y aplicaciones. Editorial Loemco, Madrid, 1998.
- 14. Colectivo de autores. Ingeotúneles. Entorno Gráfico, Madrid, 1999.
- Fernández Jorge, L.: Actualización del sistema de explotación del yacimiento "El Cacao". Trabajo de diploma, ISMMANJ, 2003.
- 16. Freund, J.E. y Simon, G.A.: Modern Elementary Statistics. Eighth Edition. Prentice Hall. New Jersey, 1992, pp.578.
- 17. Gustafsson, R.: Técnica Sueca de voladura. Editorial Nora, Suecia, 1977.

- Gelvez Albarracin, W. y O.A. Acevedo. Valoración del macizo rocoso y diseño de pasaporte de voladura en la mina Merceditas. Trabajo de Diploma, ISMMANJ, 2003
- Hoek, E. and Edwin Brown. Underground excavations in rock. Institution of mining and metallurgy. London, 1980.
- Jaramillo Romero, J.: Perfeccionamiento de los trabajos de voladura en el yacimiento XX Aniversario. Tesis de Maestría. ISMMANJ, 1999.
- 21. Konya, C.J.: Blasting design. Surface mining environmental monitoring and reclamation Hanbrok, 1983.
- 22. Kucheriavi F.I., M.F. Drukovanni y Gaek Y.B.: Explosiones breverretardadas en las canteras. Gosgortexizdat, 1962.
- 23. López Jimeno, E.: Implantación de un método de cálculo y diseño de voladuras en banco. Tesis Doctoral ETS de ingenieros de minas de Madrid, 1986.
- 24. Langefors, U. y Kihlstrom B.: Voladuras de rocas. Editorial Urmo, 1973.
- 25. Otaño Noguel, J.: Fragmentación de rocas con explosivos. Editorial Félix Varela, La Habana, 1998.
- Ótaño Noguel, J.: Acción de la explosión en las rocas ligadas. Diplomado de voladuras, módulo 3, UNL, Loja, Ecuador, 1998.
- 27. Otaño Noguel, J. Elementos de física de las rocas. Editorial Pueblo y Educación,
 La Habana, 1981.
- 28. Otaño Noguel, J.: El corte de monolitos y bloques de mármol por el método hidroexplosivo. Tesis de Grado Científico, ISMMANJ, 1984.
- 29. Olofsson, S.O.: Applied explosives technology for construction and mining. Applex, 1990.
- Pokroski G.I. y F.S. Fedorov. Acción del golpe y la explosión en los medios deformables. Prometroizdat, 1957.
- Palacios, G.: Perfeccionamiento de los trabajos de voladura en el yacimiento XX Aniversario. Tesis de Maestría. ISMMANJ, 1997.
- 32. Palacios Greco, L.: Proyecto de actualización minera del yacimiento de calizas para áridos "La Inagua", Santiago de Cuba, 2001.
- 33. Praillet, R.: A new approach to blasting, 1980.
- 34. Rustan, P.A.: Burden, Spacing and Brehole Diameter at Rock Blasting. The Third Intermatinal Symposium on Rock fragmentation by blasting, 1990.

- 35. Slaughter, S.: Efecto de la perforación en los resultados de una voladura. Concretonline, Madrid, 2005.
- Sujanov A.F. y B.N. Kutuzov. Fragmentación de rocas. Editorial Nedra, Moscú, 1967.
- 37. Sargentón Romero, G.: Perfeccionamiento de los trabajos de perforación y voladura en la excavación de túneles en Cuba Oriental. Tesis de Maestría, ISMMANJ, 1997.
- 38. Specifications for Amonite-R No.4. Beijing, 2005.
- 39. Ucar R.: Importancia del retiro en el diseño de voladuras y parámetros a considerar. GEOS, 24-3-110, Caracas, enero 1978.
- 40. ULAEX S.A. Unión Latinoamericana de Explosivos, S.A. Editorial SI-MAR S.A, Sevilla, 1999.
- 41. ULAEX S.A. Exposición para Expocaribe, 2003.
- 42. Unión Química. Ministerio de la Industria Básica, 2004.
- 43. Vinent Feraud, J., Georgy Kalinin y Mirna Regueiferos. Informe geológico sobre los trabajos de exploración detallada del yacimiento de calizas "El Cacao" municipio Jiguaní, Granma, 1977
- 44. Vinent Feraud, J. y Mirna Regueiferos. Informe final sobre los trabajos de exploración detallada del yacimiento de calizas el Cacao, municipio Jiguaní, provincia Granma, 1977.
- 45. Voss, B.: Blasting technology. The big picture. World Mining Equipment. Vol. 25, No.3, 39-40 p, 2001.
- 46. Fernández Rodríguez. M.: Patrón de Voladura: Sustitución de importaciones. Guantánamo, 2003.
- González Pérez, A.: Perfeccionamiento de la tecnología de voladura en el laboreo de excavaciones en mina Merceditas. Tesis de Maestría, ISMMANJ, 1996.
- Gogoliev, V.M. y otros.: Ecuaciones de estado aproximadas de los cuerpos sólidos. PMTF, No.5, 1968.
- 49. Gogoliev, V.M. y otros.: Acerca de la zona cercana a la explosión de una carga concentrada, Editorial Elim, Frunze, 1965.
- 50. Walker, S.: Blasting technology. Cutting down to size. World Mining Equipment. Vol. 25, No.3, 42 p, 2001.

- Wolf, M.: Blasting technology. Going with a bang. World Mining Equipment. Vol.
 2, No.2, 12-14 p, 1999.
- 52. Xanukaev A.N.: Energía de las ondas de tensión en la fragmentación de rocas por la explosión. Gosgortexizdat, 1962.
- 53. Xanukaev, A.: Procesos físicos en el arranque de rocas con explosivos. Editorial Nedra, 1974.
- 54. http://www.unam.mx/terracerias/tema5b.html.17/06/2005.pág.6
- 55. http://www.iimp.org.pe/tratec/mineria/4/2-3html.20/01/2004.pág.1
- 56. http://www.mineranet.com.ar/loscarbonatos.asp 21/01/2004 pág.1
- 57. http://www.editec.cl/mchilena/abri2003/articulo/tecnicas.htm.5/07/05.pág.2
- 58. http://www.editec.cl/mchilena/abri2003/articulo/tronaduras.htm.3/08/05.pág.1
- 59. http://www.concretonline.com/jsp/explosivos.jsp.16/06/05.pág.3
- 60. http://www.osso.org.co/doc/tesis/2003/vibracion/b.pdf.13/06/05.pág.2

ANEXOS

ANEXO 1

PLANO DE LA CANTERA

ANEXO 2

ANALISIS ESTADISTICO
Resultados de las	Índices	
determinaciones		
79,9777	Media aritmética	79,904
79,7333	Desviación estándar teórica	0,155
79,9778	Coeficiente de variación	0,194
80,000	Índice de exactitud	0,121
79,9997		
79,5111		
79,9999		
79,8500		
80,0000		
79,9896		

Tabla 1 Estadística descriptiva para la resistencia a compresión.

Tabla 2 Estadística descriptiva para la resistencia a tracción.

Resultados de las	Índices	
determinaciones		
7,04	Media aritmética	7,274
7,04	Desviación estándar teórica	0,220
7,33	Coeficiente de variación	3,028
7,63	Indice de exactitud	2,654
7,33		

Resultados de las	Índices	
2712,2	Media aritmética	2660
2631,0	Desviación estándar teórica	39,32
2631,7	Coeficiente de variación	1,478
2600,2	Índice de exactitud	0,916
2701,9		
2600,2		
2673,2		
2673,2		
2675,5		
2701,0		

Tabla 3 Estadística descriptiva para la densidad.

Tabla 4 Estadística descriptiva para la masa volumétrica.

Resultados de las determinaciones	Indices	26
2650,4	Media aritmética	2640
2600,2	Desviación estándar teórica	33,909
2602,7	Coeficiente de variación	1,284
2 <mark>5</mark> 98,9	Índice de exactitud	0,796
2684,9		
2598,9		
2669,4		
2672,0		
2672,0		
2650,4		

Tabla 5 Estadística descriptiva para la velocidad de las ondas longitudinales en el macizo.

Resultados de las	Índices	
determinaciones		
6383,333	Media aritmética	6495
6552,778	Desviación estándar teórica	159,56
6387,831	Coeficiente de variación	2,457
6367,021	Índice de exactitud	2,153
6784,181		

Tabla 6 Estadística descriptiva para la velocidad de las ondas longitudinales en la varilla.

Resultados de las	Índices	
determinaciones		
6077,108	Media aritmética	6030
6038,690	Desviación estándar teórica	58,905
5952,663	Coeficiente de variación	0,977
5975,148	Índice de exactitud	0,856
6107,879		

Sector	Porcentaje de pedazos sobredimensionados	X	S	V	Número de voladuras
1	6,94 7,39 7,34	7,22	0,20	2,77	3
II	7,30 7,39 7,68	7,59	0,21	2,76	3
III	8,05 7,63 7,32	7,67	0,30	3,90	6

Tabla 7 Determinación del número de voladuras experimentales

Sector	Porcentaje de pedazos sobredimensionados	Valor medio del porcentaje de pedazos sobredimensionados
*	6,94 7,39 7,34 8,33 8,45 7,81	7,71
11	7,30 7,39 7,68 7,08 6,02 8,66	7,42
III	8,05 7,63 7,32 8,31 7,87 8,20	7,90

Tabla 8 Porcentaje de pedazos sobredimensionados

ANEXO 3

MEDICIONES DE GRIETAS

Resultados de las mediciones de grietas.

		F	amilia 1		
Número	Acimut (grado)	Buzamiento (grado)	Abertura (cm)	Espaciamiento (m)	Relleno
1	310	80	0.30	0.00	Arcilla
2	310	80	0.30	0.50	
3	320	86	0.50	0.60	
4	310	80	0.50	1.25	
5	320	86	0.50	0.55	Arcilla
6	310	80	0.50	0.55	Arcilla
7	310	80	0.50	0.60	Arcilla
8	310	80	0.40	0.60	Arcilla
9	310	80	0.55	0.50	Arcilla
10	298	81	1.10	0.50	Arcilla
11	305	81	0.65	0.50	Arcilla
12	310	80	1.10	0.60	Arcilla
13	298	81	0.00	0.00	Arcilla
14	298	81	0.30	0.50	
15	298	81	0.20	0.50	Arcilla
16	310	80	0.20	0.60	
17	310	85	2.00	0.60	Arcilla
18	310	85	0.50	0.50	
19	320	81	0.50	0.65	
20	293	81	0.50	0.65	
21	320	81	1.00	0.35	Arcilla
22	320	81	0.40	0.35	
23	310	80	0.60	0.60	Arcilla
24	310	80	0.50	0.50	
25	320	81	0.50	0.60	
26	292	82	0.30	2.00	
27	320	81	0.50	0.50	
28	292	82	0.50	0.50	Arcilla
29	310	80	0.50	0.60	
30	320	81	1.00	0.50	Arcilla

Tabla 1 Mediciones de grietas realizadas en los sectores I y III.

		F	amilia 1		
Número	Acimut (grado)	Buzamiento (grado)	Abertura (cm)	Espaciamiento (m)	Reilenc
31	320	81	0.40	0.50	
32	310	80	0.50	0.60	-
33	310	80	0.50	0.00	
34	293	81	0.35	0.50	
35	310	80	1.50	0.50	Arcilla
36	310	80	0.00	0.50	
37	310	80	0.50	0.50	Arcilla
38	310	80	0.55	0.65	Arcilla
39	293	81	1.00	0.65	
40	310	80	0.50	1.00	
41	310	80	1.50	1.00	Arcilla
42	310	80	1.00	0.75	
43	300	80	0.30	2.00	Arcilla
44	312	80	0.70	0.80	
45	310	80	0.50	0.40	
46 ′	310	80	2.00	0.50	Arcilla
47	244	82	0.40	1.50	
48	293	81	0.40	1.80	
49	310	80	0.30	0.55	
50	312	80	0.80	0.60	Arcilla
51	310	80	0.30	0.60	
52	310	80	0.30	0.60	
53	305	80	0.40	0.60	
54	310	80	0.50	0.50	Arcilla
55	310	80	0.80	0.60	Arcilla
56	298	86	0.20	0.00	
57	282	83	0.10	0.60	
58	282	83	0.20	0.60	Arcilla
59	298	81	0.30	0.70	Arcilla
60	310	80	0.50	1.00	Arcilla

Tabla 1 Continuación...

	4 0		
	9 1 1	5 15 91 15 1	
	1 1 1		
I UDIU			

		F	amilia 1		
Número	Acimut (grado)	Buzamiento (grado)	Abertura (cm)	Espaciamiento (m)	Relleno
61	310	80	0.00	0.40	
62	298	86	0.30	0.35	
63	310	80	0.50	0.55	
64	310	80	0.50	0.50	Arcilla
65	<mark>31</mark> 0	80	0.30	0.60	
66	298	86	2.00	0.65	Arcilla
67	310	80	0.50	0.80	
68	288	85	2.00	0.40	
69	288	82	0.70	0.60	Arcilla
70	310	80	0.50	1.00	Arcilla
71	310	80	0.45	0.60	Arcila
72	320	81	0.50	0.60	
73	320	81	0.76	2.00	
74	320	81	0.50	0.80	
75	310	80	0.60	0.60	
76	310	80	0.50	1.00	
77	298	81	0.40	0.50	
78	310	80	0.50	0.60	
79	292	82	0.40	0.60	
80	298	86	1.00	0.50	Arcilla
81	320	86	0.50	0.60	
82	320	86	1.60	1.00	Arcilla
83	320	86	0.50	0.00	
Promedio	307	81	0.60	0.65	Arcilla

Familia 2						
Número	Acimut (grado)	Buzamiento (grado)	Abertura (cm)	Espaciamiento (m)	Relleno	
84	244	78	1.50	0.00		
85	244	78	1.60	1.55	Arcilla	
86	244	78	1.90	1.50	Arcilla	
87	244	78	1.50	1.50	Arcilla	
88	244	78	1.30	1.50	Arcilla	
89	244	78	1.35	2.50	Arcilla	
90	248	78	1.00	1.50	Arcilla	
91	230	76	1.00	2.00	Arcilla	
92	248	78	2.00	1.98	Arcilla	
93	244	76	2.50	1.90	Arcilla	
94	248	78	2.70	1.30	Arcilla	
95	244	78	1.75	1.30	Arcilla	
96	244	78	1.00	1.00	Arcilla	
97	244	78	0.50	1.65	Arcilla	
98	248	78	2.00	2.00	Arcilla	
99	244	76	2.00	1.00	Arcilla	
100	244	78	2.00	1.00	Arcilla	
101	244	78	1.50	1.70	Arcilla	
102	244	78	4.30	2.00	Arcilla	
103	244	78	0.60	1.20	Arcilla	
104	244	78	0.80	1.50	Arcilla	
105	244	78	3.00	1.15	Arcilla	
106	244	78	0.70	1.50	Arcilla	
107	244	78	3.00	1.99	Arcilla	
108	244	76	1.00	1.00	Arcilla	
109	244	78	2.00	1.95	Arcilla	
110	244	78	0.80	1.95	Arcilla	
111	244	78	1.00	1.90	Arcilla	
112	270	78	1.50	1.00	Arcilla	
113	244	78	0.70	1.50	Arcilla	

Tabla 2 Mediciones de grietas realizadas en los sectores I y III.

Familia 2						
Número	Acimut (grado)	Buzamiento (grado)	Abertura (cm)	Espaciamiento (m)	Relleno	
114	244	78	0.70	1.90	Arcilla	
115	244	78	0.55	1.90	Arcilla	
116	248	78	1.60	0.00		
117	244	78	2.00	1.90		
118	244	78	1.60	1.50		
119	244	76	1.50	1.50		
120	230	78	1.75	1.50	Arcilla	
121	248	73	1.10	1.40	Arcilla	
122	244	78	0.70	1.40		
123	244	78	1.00	1.60		
124	247	78	1.30	1.10	Arcilla	
125	248	78	1.30	1.80		
126	244	78	2.90	1.95	Arcilla	
127	244	78	2.40	1.40	Arcilla	
128	248	78	1.00	2.00		
129	248	78	1.60	1.50		
130,	235	78	1.60	1.50	Arcilla	
131	244	78	2.50	1.20	Arcilla	
132	244	76	1.50	0.00	Arcilla	
133	244	76	2.00	2.00	Arcilla	
134	244	78	1.60	1.50	Arcilla	
135	248	78	1.20	2.00	Arcilla	
136	242	73	1.60	2.00		
137	244	78	1.90	1.30	Arcilla	
138	244	78	1.00	1.10		
139	244	78	1.00	1.30		
140	244	78	1.45	1.20	Arcilla	
141	244	78	1.60	1.50		
142	244	78	1.50	1.50	Arcilla	
143	244	73	3.00	1,50	Arcilla	

Tabla 2 Continuación...

T . 1 .	0	0	
1 ania		('ontin	Iacion
aula	~	UTILIT	
	_		

	Familia 2							
Número	Acimut (grado)	Buzamiento (grado)	Abertura (cm)	Espaciamiento (m)	Relleno			
144	248	78	3.00	1.50	Arcilla			
145	244	78	1.00	1.80	Arcilla			
146	235	78	1.80	1.50				
147	244	77	1.50	0.00	Arcilla			
Promedio	244	78	1.60	1.50	Arcilla			

	Familia 3						
Número	Acimut (grado)	Buzamiento (grado)	Abertura (cm)	Espaciamiento (m)	Relleno		
148	30	8	0.00	0.00			
149	30	10	0.00	0.50			
150	30	10	0.20	0.50			
151	30	10	0.10	0.50			
152	30	10	0.10	0.70			
153	30	9	0.10	0.50			
154	30	10	0.00	0.30			
155	30	10	0.10	0.30	Arcilla		
156	30	10	0.10	0.40	Arcilla		
157	30	9	0.10	0.40	Arcilla		
158	30	10	0.00	0.55			
159	30	10	0.00	0.30			
160	30	10	0.00	0.00			
161	30	10	0.00	0.40			
162	30	10	0.00	0.20			
163	30	8	0.00	0.50			
164	30	10	0.00	0.50			
165	30	10	0.00	0.50			
166	30	10	0.00	0.50			
167	30	10	0.00	0.50			
168	30	8	0.00	0.50			
169	30	10	0.00	0.35			
170	30	10	0.00	0.50			
171	30	9	0.30	0.50	Arcilla		
172	30	10	0.20	0.50	Arcilla		
173	30	9	0.10	0.70			
174	30	10	0.10	1.00			
175	30	9	0.10	1.30	Arcilla		
176	30	10	0.00	0.85			
177	30	9	0.00	0.20			

Tabla 3 Mediciones de grietas realizadas en los sectores I y III.

	Familia 3						
Número	Acimut (grado)	Buzamiento (grado)	Abertura (cm)	Espaciamiento (m)	Relleno		
178	30	10	0.10	0.00	Arcilla		
179	30	8	0.10	0.75	Arcilla		
180	30	8	0.10	0.90	Arcilla		
181	30	9	0.00	0.50			
182	30	9	0.00	0.82			
183	30	9	0.00	0.85			
184	30	9	0.10	0.30	Arcilla		
185	30	10	0.00	0.30			
186	30	10	0.00	0.30			
187	30	10	0.00	0.50			
188	30	9	0.10	1.00			
189	30	10	0.00	0.87			
190	30	9	0.14	0.50			
191	30	10	0.16	0.40			
192	30	10	0.01	1.02			
193	30	10	0.00	0.80			
194	30	10	0.00	0.20			
195	30	9	0.20	1.00	Arcilla		
196	30	10	0.00	0.50			
197	30	10	0.10	0.40	Arcilla		
198	30	9	0.10	0.50	Arcilla		
199	30	10	0.10	0.50	Arcilla		
200	30	9	0.00	0.50			
201	30	10	0.10	0.50	Arcilla		
202	30	9	0.00	0.50			
203	30	10	0.00	0.50			
204	30	9	0.10	0.00			
Promedio	30	10	0.05	0.52	Arcilla		

Tabla 3 Continuación.

Familia 1						
Número	Acimut (grado)	Buzamiento (grado)	Abertura (cm)	Espaciamiento (m)	Relleno	
205	284	85	1.50	0	Arcilla	
206	280	82	0.50	0.50	Arcilla	
207	280	83	0.75	0.80	Arcilla	
208	280	83	0.75	1.70	Arcilla	
209	280	83	0.20	2.00	Arcilla	
210	284	85	0.20	0.80	Arcilla	
211	284	85	0.20	1.50	Arcilla	
212	280	82	3.50	1.60	Arcilla	
213	282	83	1.00	0.75	Arcilla	
214	282	85	0.50	0.00	Arcilla	
215	298	86	0.50	0.75	Arcilla	
216	320	86	2.00	0.70	Arcilla	
217	320	86	0.80	0.70	Arcilla	
218	283	84	2.00	1.00	Arcilla	
219	298	86	2.50	0.90	Arcilla	
220	320	86	2.50	1.00	Arcilla	
221	320	86	2.50	0.70	Arcilla	
222	206	87	2.30	0.60	Arcilla	
223	320	86	2.60	0.50	Arcilla	
224	320	86	1.70	0.50	Arcilla	
225	320	86	1.70	0.45	Arcilla	
226	320	86	2.00	0.70	Arcilla	
227	320	86	2.10	0.60	Arcilla	
228	284	85	0.75	0.50	Arcilla	
229	320	86	0.75	0.40	Arcilla	
230	320	86	0.80	1.00	Arcilla	
231	320	86	0.50	0.70	Arcilla	
232	320	86	0.50	1.80	Arcilla	
233	300	86	0.75	0.00	Arcilla	
234	312	86	0.80	0.50	Arcilla	

Tabla 4 Mediciones de grietas realizadas en el sector II

Tabla 4 Continuación...

	Familia 1						
Número	Acimut (grado)	Buzamiento (grado)	Abertura (cm)	Espaciamiento (m)	Relleno		
235	306	85	0.80	0.70	Arcilla		
236	305	86	0.80	0.30	Arcilla		
237	310	86	5.00	0.29	Arcilla		
238	293	86	0.00	0.00	Arcilla		
239	284	85	0.40	0.70	Arcilla		
240	288	85	0.95	0.78	Arcilla		
241	310	85	0.78	0.50	Arcilla		
242	310	85	0.00	0.00	Arcilla		
243	320	86	2.00	1.00	Arcilla		
244	320	86	2.00	0.50	Arcilla		
245	320	85	3.00	0.70	Arcilla		
246	244	82	5.00	0.00			
247	244	82	2.00	0.70	Arcilla		
248	282	84	1.00	1.00			
249	222	88	2.00	1.50	Arcilla		
250	292	85	0.80	0.65			
251	244	85	3.50	1.00	Arcila		
252	292	85	1.50	1.50	Arcilla		
253	292	86	0.00	0.90			
254	284	85	0.20	0.00	Arcilla		
255	284	85	0.20	1.40			
256	320	86	0.50	0.70	Arcilla		
257	284	85	2.50	0.50	Arcilla		
258	320	86	1.00	1.00			
259	320	86	2.00	0.30	Arcilla		
260	273	86	0.00	0.60			
261	272	88	0.00	1.50			
262	277	88	0.00	0.00			
263	320	86	0.50	1.10			
264	310	82	0.50	1.50			

Familia 1						
Número	Acimut (grado)	Buzamiento (grado)	Abertura (cm)	Espaciamiento (m)	Relleno	
265	320	86	0.30	1.00		
266	320	86	0.75	1.00	Arcilla	
267	320	86	0.50	0.80	Arcilla	
268	284	85	0.50	0.80	Arcilla	
269	320	86	0.65	0.84	Arcilla	
^c 270	298	86	0.00	0.84		
271	298	86	0.50	0.75		
272	284	85	0.30	1.30	Arcilla	
273	320	86	0.70	0.00	Arcilla	
274	310	82	1.50	1.00	Arcilla	
275	306	80	0.50	0.70	Arcilla	
276	284	85	0.60	0.30	Arcilla	
277	310	80	0.75	0.40	Arcilla	
278	320	86	0.60	0.50	Arcilla	
279	301	82	0.85	0.60	Arcilla	
280	284	85	0.85	0.70	Arcilla	
281	298	86	0.75	1.00	Arcilla	
282	298	86	0.75	1.10	Arcilla	
283	284	85	0.40	0.70	Arcilla	
284	284	85	0.40	1.00	Arcilla	
285	284	85	0.50	1.00	Arcilla	
286	284	85	0.75	0.90	Arcilla	
287	292	82	0.50	0.70	Arcilla	
288	284	85	2.75	0.50	Arcilla	
289	292	82	0.40	0.50	Arcilla	
290	292	82	0.40	0.65	Arcilla	
291	244	85	0.40	1.00	Arcilla	
292	284	85	2.50	0.00	Arcilla	
Promedio	295	85	0.75	0.74	Arcilla	

Tabla 4 continuación.

	Familia 2						
Número	Acimut (grado)	Buzamiento (grado)	Abertura (cm)	Espaciamiento (m)	Rellenc		
293	231	78	0.50	0.00	Arcilla		
294	235	78	1.00	2.00	Arcilla		
295	270	78	3.00	4.20	Arcilla		
296	116	80	3.10	0.00	Arcilla		
297	116	80	2.00	1.20	Arcilla		
298	118	80	3.00	1.00	Arcilla		
299	302	78	0.70	2.90			
300	300	78	5.00	1.45	Arcilla		
301	308	78	0.70	1.70			
302	310	78	0.30	1.45			
303	306	78	0.80	1.60			
304	300	78	2.50	1.50	Arcilla		
305	230	78	1.55	1.50	Arcilla		
306	248	78	0.30	0.00			
307	244	80	1.40	1.40	Arcilla		
308	248	78	1.00	2.00			
309	248	80	1.00	2.50			
310	244	78	1.40	1.00	Arcilla		
311	248	78	0.50	1.60	4		
312	247	78	0.50	1.30	Arcilla		
313	248	78	0.50	3.20	Arcilla		
314	248	78	3.00	1.00	Arcilla		
315	246	78	0.80	0.00	Arcilla		
316	275	81	3.00	4.30	Arcilla		
317	116	80	1.30	1.20	Arcilla		
318	116	80	2.20	1.60	Arcilla		
319	116	80	0.40	1.80			
320	118	80	1.80	1.00	Arcilla		
321	248	78	0.70	1.40	Arcilla		
322	300	78	1.00	1.45			

Tabla 5 Mediciones de grietas realizadas en el sector II

Familia 2							
Número	Acimut (grado)	Buzamiento (grado)	Abertura (cm)	Espaciamiento (m)	Relleno		
323	308	78	0.80	2.00	Arcilia		
324	310	78	0.50	1.18	Arcilla		
325	306	78	0.40	1.60	Arcilla		
326	300	78	0.30	1.80			
327	248	78	2.00	2.70	Arcilla		
328	116	80	3.70	1.70	Arcilla		
329	308	78	2.00	1.70	Arcilla		
330	308	78	2.00	1.60	Arcilla		
331	302	78	0.70	1.75	Arcilla		
332	300	78	0.60	1.65			
333	310	78	2.80	2.50	Arcilla		
334	306	78	1.00	2.10	Arcilla		
335	275	78	1.90	2.10	Arcilla		
336	116	80	1.10	2.10	Arcilla		
337	248	78	1.35	2.10	Arcilla		
338	247	78	0.50	0.00	Arcilla		
Promedio	244	79	1.45	1.65	Arcilla		

Tabla 5 Continuación...

Familia 3						
Número	Acimut (grado)	Buzamiento (grado)	Abertura (cm)	Espaciamiento (m)	Relleno	
339	60	8	0.00	0.00		
340	60	8	0.00	0.50		
341	60	8	0.20	1.50	Arcilla	
342	60	8	0.40	0.50	Arcilla	
343	60	8	0.00	0.50		
344	60	8	0.00	0.50		
345	60	8	0.00	0.55		
346	60	8	0.00	0.55		
347	60	8	0.00	0.50		
348	60	8	0.00	0.50		
349	60	8	0.00	0.60		
350	60	8	0.00	0.50		
3 <mark>5</mark> 1	60	8	0.00	0.00		
352	60	8	0.00	1.00		
353	60	8	0.00	0.50		
354	60	8	0.00	0.50		
355	60	8	0.10	0.50	Arcilla	
356	60	8	0.20	0.50	Arcilla	
357	60	8	0.00	0.50		
358	60	8	0.00	0.60		
359	60	8	0.00	0.50		
360	60	8	0.00	0.50		
361	60	8	0.10	0.70	Arcilla	
362	60	8	0.00	1.30		
363	60	8	0.00	0.60		
364	60	8	0.10	1.50	Arcilla	
365	60	8	0.00	1.10		
366	60	8	0.10	0.00	Arcilla	
367	60	8	0.10	1.60		
368	60	8	0.10	1.30		

Tabla 6 Mediciones de grietas realizadas en el sector II

Tabla 6 Continuación.

Familia 3					
Número	Acimut (grado)	Buzamiento (grado)	Abertura (cm)	Espaciamiento (m)	Relleno
369	60	8	0.00	1.20	
370	60	8	0.10	0.55	
371	60	8	0.10	0.50	
372	60	8	0.00	0.50	
373	60	8	0.00	0.50	
374	60	8	0.10	0.50	
375	60	8	0.00	2.00	
376	60	8	0.00	0.00	
Promedio	60	8	0.04	0.68	Arcilla