

MINISTERIO DE LA EDUCACION SUPERIOR
INSTITUTO SUPERIOR MINERO METALÚRGICO DE MOA
"DR. ANTONIO NÚÑEZ JIMÉNEZ"
FACULTAD GEOLOGÍA -MINERÍA
DEPARTAMENTO DE GEOLOGIA

Trabajo de diploma

Mineralogía de un cuerpo silicatado de perfiles lateríticos mediante DRX y espectros infrarrojos.

Autor: Virgilio Aurelio Martinez Lores

Tutor: Dr. Arturo Rojas Puron

Moa, 2011

Año 53 de la Revolución Cubana

DEDICATORIA

Dedico este trabajo primeramente a mi madre Maria, que es la persona que más yo amo en este mundo, luego a mi padre Aurelio y a mi hermana Maiza en conjunto con mis sobrinos, también quiero dedicarle el mismo a mi esposa Dayannis y de una forma muy especial a mi pequeña Dalia Maria (Dalita) que aun esta por nacer.

PENSAMIENTO

Para ser un buen profesional, primero hay que ser un buen estudiante,

Para ser un buen jefe, primero se es buen estudiante,

Para ser un geólogo excelente, debes ser primero buen estudiante.

Porque la teoría es el jefe militar, la practica, son los soldados.

Leonardo Da vinci

AGRADECIMIENTOS:

Primero que todo debo de darle gracias a Dios por permitir que este trabajo fuera realizado, porque sin su ayuda nada de esto hubiera sido posible, después quiero agradecerle a mi madre Maria Lores por haber sido una luchadora incansable y por no claudicar nunca ante las necesidades y obstáculos que aparecían a menudo. Luego le doy gracias a mi papá por dar siempre el paso al frente cuando se necesitaba y por aquellos consejos que unas veces más que otras fueron de mucha ayuda.

Le doy gracias a mi esposa Dayannis por todo su apoyo brindado y por aparecer en el momento mas indicado. También quiero agradecer a mis hermanos Maiza e Ivannis, que siempre estuvieron dando su apoyo desde su posición de combate.

No quiero dejar de mencionar a mis amigos Yolennis y Yulieskis, por siempre estar a mi lado en los momentos más difíciles de mi carrera universitaria, por darme su apoyo y permitir que mis ojos nunca miraran atrás.

Luego le agradezco a mucho a Maria Elena Navarro y a Elio Beccles Hernandez en conjunto con su hija por realizar el grandioso trabajo de decirme quien soy y cual es el camino que debo tomar, eso me hizo saber quien soy.

A mi querida amiga Yohalena decirle que siempre voy a estar en deuda con ella, siempre reparando lo que yo rompo, encargándose de mis problemas casi sin solución y cambiando muchas veces lo correcto por lo incorrecto..

RESUMEN:

En el presente trabajo se exponen las diferentes características mineralógicas y genéticas de un cuerpo silicatado que existe en el sector septentrional del yacimiento punta gorda, también se dan a conocer los resultados de 17 muestras estudiadas mediante los métodos de investigación Difracción de Rayos –X y Espectros Infrarrojos.

Los resultados del trabajo se presentan a partir de tres capítulos...

En el primer capitulo se explican las características geológicas generales del Yacimiento Punta Gorda, los aspectos generales de la corteza de meteorización así como los antecedente de los estudios mineralógicos realizados en esta área. En el capitulo dos se habla de los materiales y métodos de investigación, del tipo de muestreo, de la preparación de la muestra y de cómo fueron usados los equipos. Finalmente en el capitulo tres salen a la superficie los resultados de la investigación.

El estudio realizado de las 17 muestras, a permitido conocer que en el cuerpo silicatado existen 15 minerales y que la mayoría son alumino-silicatos hidratados existentes dentro de los perfiles lateríticos. También se pudo establecer las bandas de absorción en cuanto a la longitud de onda de los minerales (gibbsite, chlorite, hemetite, goethite y kaolinite). Por ultimo se pudo identificar tres tipos de chlorite, las ricas en hierro, en aluminio y en magnesio.

ABSTRACT:

The present document expose the different mineralogical characteristics and geneticses of a silicated body, it's located in the central sector of the Punta Gorda deposite, also shows the obtained results of 17 samples studied using the diffraction of x- rays and infrared specters methods.

The results are presented in three chapters...

The first chapter explain the general geologic characteristics of the bed dots fat, the general aspects of the weathering surface and effect of the soil elements as well as the privies mineralogical studies that where done for this area. Chapter two focuses on the materials and investigation methods of the type of sampling for the preparation of the sample and how they were used in the equipments. Finally in chaper three, shows the obtained results of the investigation.

The carried out study of the 17 samples, avails the knowledge that in the silicatado body exists 15 mineral and that the majority are alumino-hydrous existenting in the literate profiles. It also establish the absorption bands of the wave-length of the minerals (gibbsite, chlorite, hemetite, goethite and kaolinite). Finally three types of chlorite can be identify, the ones with high content of iron, aluminums and magnesium.

Contenido

		Pág. №
	Introducción	1
1.0.	Capitulo # I Características de la región de estudio	5
1.1.	Ubicación geográfica de la zona	5
1.2.	Características físico-geográficas	6
1.2.1.	Hidrografía	6
1.2.2.	Clima	7
1.2.3.	Vegetación	7
1.2.4.	Economía	7
1.2.5.	Geotectónica	8
1.3.	Características geológicas de la región	9
1.3.1.	Macizo ofiolítico Mayarí -Baracoa	11
1.3.2.	Macizo ofiolítico Moa-Baracoa	12
1.3.3.	Arco volcánico del cretácico	13
1.3.4.	Características geológicas del área de estudio	14
1.3.5.	Caracterización de la corteza de meteorización	14
2.0.	Capítulo # II Materiales y métodos de investigación empleados	16
2.1.	Introducción	16
2.2.	Metodología aplicada en la investigación	16
2.3.	Muestreo	17
2.4.	Difracción de Rayos X	27
2.5.	Aplicación de los Rayos X	27

2.6.	Interpretación de los distintos difractogramas pertenecientes a las muestras tomadas en el yacimiento Punta Gorda	28
2.7.	Espectroscopia infrarrojo	44
2.8.	Fuente de radiación	44
2.9.	Preparación de la muestra sólida	44
2.10.	Diagramas espectroscópicos pertenecientes a las muestras tomadas en el cuerpo silicatado del yacimiento Punta Gorda	47
3.0.	Capitulo # III. Interpretación de los resultados	55
	Conclusión	62
	Recomendación	63
	Bibliografía	64
	Anexos	69

ITRODUCCIÓN:

Este trabajo ha sido realizado en las cortezas ferroniquelíferas en un sector del yacimiento Punta Gorda, esta corteza ha sido producida por los diferentes procesos físicos – químicos que les han sucedido a las rocas ultra básicas (ofiolítas) a lo largo del tiempo geológico.

Los yacimientos ferroniquelíferos cubanos son genéticamente de tipo residual, formado por una corteza de intemperismo en forma de manto que descansa sobre la roca madre. Esta corteza se encuentra desarrollada sobre una cadena montañosa compuesta por rocas ultramáficas serpentinizadas, en menor grado por rocas básicas efusivas. Entre los yacimientos principales tenemos los de pinares de Mayarí y los de Moa, constituyendo nuestro país una de las mayores reservas de níquel mundial.

Es preciso saber que las ofiolitas en la porción nororiental de cuba se caracterizan por un marcado predominio del complejo de tectónicas, donde las rocas asociadas a este complejo son las harzburgitas con diferentes grados de serpentinización, dunitas y dunitas plagioclásicas, wherlitas, igersolitas y piroxenitas(cretácico superior K_2).

Las cortezas lateríticas ferroniquelíferas afloran hacia la parte centro –sudoeste del yacimiento, se trata de una corteza insitu, madura, de perfil completo, que sobreyace a las ultrabasitas serpentinizadas que les dieron origen (mioceno N_1)

Los principales minerales que podemos encontrar son los diferentes óxidos e hidróxidos de hierro como pueden ser la goethita, hematita, maghemita y cantidades subordinadas de algunos hidróxidos de aluminio (gibbsita) y algunos minerales de manganeso (asbolanas) además de agregados silicatos como el cuarzo, olivino, serpentina entre otros.

Los yacimientos minerales de menas residuales de níquel desarrollados sobre litologías ultramáficas y máficas del complejo ofiolítico, constituyen las principales reservas de menas de hierro, níquel y cobalto, tal es el caso de Cuba. Las menas de níquel cubanas se conocen prácticamente desde el mismo tiempo del descubrimiento de la isla en 1492.

Estos yacimientos se han desarrollado en cortezas de meteorización, donde las condiciones químicas y físicas de formación están expuestas a una envoltura termodinámica peculiar caracterizada por temperatura y presión baja, el limite inferior lo forma la superficie del oxigeno, es decir, la superficie hasta la cual penetra el oxigeno en profundidad, esta superficie esta cerca del nivel de las aguas subterráneas por lo general se encuentra situada a una distancia de 60mts a 100mts de profundidad, y en algunos casos hasta 200mts, pero pueden bajar a los 1500mts a través de algunas fisuras con una circulación profunda de las aguas subterráneas.

El yacimiento Punta Gorda es uno de los principales depósitos lateríticos del nordeste oriental cubano, formado a partir de rocas básicas y ultrabásicas pertenecientes al macizo ofiolítico Moa-Baracoa, (Iturralde Vinent, 1996; Proenza y otros, 1998, Lavaut, 1998), el yacimiento yace en las cortezas lateríticas ferroniquelíferas que afloran hacia la parte centro-sudoeste, se trata de una corteza insitu madura de perfil completo, que sobreyace a las ultrabasitas serpentinizadas que les dieron origen(mioceno N₁).

En esta área se han realizados algunos trabajos con buenas perspectivas, pero realmente es a partir de 1959 que en Cuba se desarrollan como en muchas otras esferas del que hacer científico del país, investigaciones serias y bien ordenadas en relación con los yacimientos de níquel.

En el trabajo de Sobol (1968) que tenia como titulo composición mineralógica de lateritas de Moa y su influencia sobre los procesos de lixiviación de mineral por ácido sulfúrico en auto clave, llego a establecer a las asbolanas como portadoras de manganeso, níquel y cobalto, además de revelar la presencia de maghemita en la laterita.

Rojas Purón realizó el trabajo relacionado con las principales fases minerales portadoras de níquel en los horizontes laterítico del yacimiento Moa estableciendo la distribución de níquel en las distintas fracciones granulométricas enriquecidas en los minerales útiles (goethita y espinelas de las lateritas), además valoró el comportamiento de níquel a través del perfil laterítico y la correlación de este metal con los elementos principales, con la definición de las fases minerales portadoras de níquel, teniendo en cuenta las fases minerales no portadoras (hematita y gibbsita) que coexisten con las portadoras dentro del material laterítico y tienen una incidencia negativa en la metalurgia de estos yacimientos ferroniquelíferos.

Este trabajo aunque no es específicamente del área de estudio, se considera que es de gran importancia para esta investigación, debido que existe una gran relación entre la génesis del yacimiento Punta Gorda y su homólogo en Moa.

Otro de los trabajos del Doctor en Ciencias Arturo Rojas Purón, realizado en conjunto con su colega Alberto Hernández Flores, donde el propósito de la investigación fue determinar en la laterita de balance del yacimiento Punta Gorda, la composición química y mineralógica de las clases granulométricas comprendidas en el rango entre 8 y 0,045 mm. Ellos emplearon técnicas de separación granulométrica por vía húmeda según la serie de Taylor, métodos de Difracción y de Fluorescencia de Rayos- X y el análisis térmico diferencial. Así se llegó a establecer que la laterita de balance es esencialmente ferrosa, y que la mayoría de los minerales en ella contenidos presentan una granulometría específica de concentración, de manera que en los granos minerales mayores de 2 mm se concentran los silicatos de magnesio (olivino y serpentina) y el hidróxido de aluminio (gibbsita), en cambio los óxidos de hierro (goethita) se concentran en los granos menores de 0,071 mm.

No se quedaron atrás los Drs.Guardado Lacaba y Yuri Almaguer Carmenates, donde los autores basan sus criterios en los estudios geológicos, geotécnicos y geomecánicos del terreno, aplicando métodos de evaluación de riesgos, los que se han tenido en cuenta para la determinación de los niveles de estabilidad y de su influencia en el colapso del talud.

El trabajo centro sus objetivos en la caracterización geomecánica del macizo sepentinítico, el estudio hidrogeológico del macizo rocoso y la evaluación de la estabilidad de taludes. Para cumplir estos objetivos se ha trabajado según la metodología de evaluación ingeniero geológica establecida para estos casos.

Como resultado, el trabajo brinda el análisis geomecánico del macizo rocoso basado en los ensayos de campo y laboratorio, la generalización de la propiedades físico mecánicas de los suelos y rocas, la influencia de las dislocaciones tectónicas, se brinda además las características acuíferas de las rocas del yacimiento y el análisis de la peligrosidad basado en la estabilidad de los taludes. Por ultimo se brinda los criterios de mitigación y de estabilidad de los taludes del yacimiento de la mina.

Problema: Necesidad de conocer la composición mineralógica del cuerpo mineral a investigar en un sector del yacimiento Punta Gorda.

Problemática: Necesidad de conocer la composición mineralógica del cuerpo mineral en un sector del yacimiento Punta Gorda, sabiendo que el cuerpo mineral que se analiza tiene una composición altamente silicatado, lo cual dificulta la extracción y procesamiento del mineral útil, teniendo en cuenta dicha dificultad hay que saber que la planta procesadora de esta materia prima se encuentra en la fabrica Comandante Ernesto che Guevara, donde la misma presenta un flujo tecnológico de carbonato amoniacal, y el exceso de sílice en este proceso es muy nocivo para este tipo de tecnología.

Objeto de estudio: Cuerpo mineral silicatado.

Objetivo: Determinar la composición mineralógica del cuerpo mineral sobre la base de los Espectros Infrarrojos y Difracción de Rayos x

Hipótesis: Si se tiene conocimiento básico de los software de computación necesarios en la investigación, un buen dominio de los equipos empleados, así como un buen patrón de guía para el trabajo, se podrán identificar los minerales presentes en el cuerpo mineral silicatado sobre la base de Difracción de Rayos –X y Espectros Infrarrojos.

1.0. Capitulo # I Características de la región de estudio

- 1.1. Ubicación geográfica de la zona.
- 1.2. Características físico-geográficas.
- 1.3. Características geológicas.

1.1. Ubicación geográfica de la zona

El área de estudio forma parte del grupo orográfico Sagua-Baracoa, lo cual hace que el relieve sea predominantemente montañoso, principalmente hacia el sur. Hacia el norte el relieve se hace más suave, disminuyendo gradualmente hacia la costa.

El yacimiento Punta Gorda se encuentra dentro del municipio de Moa, ubicado en el extremo oriental de la provincia de Holguín. Geográficamente se encuentra limitado al norte por el Océano Atlántico, la carretera de Punta Gorda y la parte baja del curso del río Moa, al sur por la línea convencional que lo separa de los yacimientos Camarioca Norte y Camarioca Este, por el oeste está limitado con el yacimiento Moa Oriental, separado de este por el límite natural del río Los Lirios y el cañón del río Moa y por el este se separa del yacimiento Yagrumaje Norte y por el río Yagrumaje, ubicándose en la margen izquierda del mismo.

Figura N°.1. Mapa de ubicación geográfica de la zona de estudio.

1.2. Características físico-geográficas

1.2.1 Hidrografía

Está representada por los ríos Moa (al norte), sus afluentes río Los Lirios (al oeste), arroyo la vaca (área central) y el río Yagrumaje (al este y sur). La fuente de alimentación principal de estos ríos y arroyos, son las precipitaciones atmosféricas, desembocando las arterias principales en el Océano Atlántico, formando deltas cubiertos de sedimentos palustres y vegetación típica de manglar. La mayor parte del yacimiento está ocupado por la zona de divisorias entre el río Yagrumaje y el arroyo La Vaca, presentando un relieve suavemente ondulado que alcanza una altura de 174 m hacia el sur disminuyendo su altura hasta 20 m al norte y nordeste. La divisoria del río Yagrumaje presenta cotas que van de 174 m hasta 134 m con una cima plana a suavemente ondulada.

1.2.2 Clima

Es tropical con abundantes precipitaciones, estando estrechamente relacionadas con el relieve montañoso que se desarrolla en la región y la dirección de los vientos alisios provenientes del Océano Atlántico cargado de humedad. En el período de 1916-1963, la temperatura media anual oscilaba entre 20 °C y 25 °C, el promedio de precipitaciones anuales entre 1200-1400 mm y la evaporación media anual entre 1400-1750 y hasta 1985 la temperatura media anual estuvo entre 22 °C y 33 °C, el promedio de precipitaciones entre 1600-2200 mm y la evaporación media anual entre 2200-2400 mm.

Desde 1985 al 1991, según la estación hidrometeorológica El Sitio y datos pluviométricos del la estación Vista Alegre, la temperatura media anual osciló entre 22.6 °C Y 30.5 °C, siendo los meses más calurosos los de julio, agosto y septiembre y los más fríos enero y febrero; el promedio de precipitaciones anuales está entre 1231-5212 mm, siendo los meses más lluviosos noviembre y diciembre y los más secos marzo, julio y agosto; la evaporación media anual oscila entre 1880-7134 mm.

1.2.3. Vegetación

La vegetación se caracteriza por la existencia de bosques de Pinus cubencis en las cortezas lateríticas y donde hay menores potencias de las mismas, matorrales espinosos, típicos de las rocas ultramáficas serpentinizada. Las zonas bajas litorales, están cubiertas por una vegetación costera típica entre la que se destaca los mangles.

1.2.4. Economía

Económicamente la región está dentro de las más industrializadas del país, no solo por sus riquezas minerales, sino además, porque cuenta con dos plantas procesadoras de níquel en producción, la Cmdte Ernesto Che Guevara y la Pedro Soto Alba. Este renglón constituye el segundo rubro exportable del país.

Además de estas industrias metalúrgicas, existen otras instalaciones de apoyo a la metalurgia y la minería, tales como la Empresa Mecánica del Níquel, Centro de Proyectos del Níquel (CEPRONIQUEL), la Empresa Constructora y Reparadora del Níquel (ECRIN), entre otras.

Además de los yacimientos lateríticos, existen los de cromo refractario, clasificado como el mejor de su tipo en el territorio cubano, los cuales se

encuentran distribuidos en las cuencas de los ríos Cayo Guam y Yamanigüey, donde una parte del mineral extraído se procesa en la planta de beneficio de Cayo Guam. Los gabroides y ultramafitas presentes en la región, pueden ser empleados como áridos en la industria de materiales de la construcción.

También existen otros organismos de los cuales depende la economía de la región tales como el establecimiento de la Empresa Geólogo Minera, la Presa Nuevo Mundo, el Tejar, el Combinado Lácteo y otros. La agricultura está poco desarrollada, aunque se hacen esfuerzos para seguir fomentándola. Existen otros sectores económicos como la ganadería que se desarrolla al sur de la región y la explotación de recursos forestales, que son abundantes en la zona, siendo un eslabón importante de la economía. La actividad pesquera está poco desarrollada.

1.2.5. Geotectónica

Desde el punto de vista regional, nuestra área se relaciona con el desarrollo de sistemas de arco insulares y cuenca marginal durante el mesozoico, y a su extinción a fines del Campaniano Superior-Maestrichtiano. Debido a procesos de acreción tectónica, se produce la obducción del complejo ofiolítico, según un sistema de escamas de sobrecorrimiento, sobre el borde pasivo de la Plataforma de Bahamas. Una vez que se ha producido el emplazamiento del complejo ofiolítico - obducción - las litologías ultramáficas en condiciones de clima tropical y subtropical, fundamentalmente, se inicia el proceso de serpentinización, aunque, hay criterios fundados en consideraciones experimentales, que en ambos procesos – obducción y serpentinización – se producen casi simultáneamente. La mayoría de los complejos ofiolíticos que afloran están tectonizados y sumamente agrietados, dislocados, con presencia de espejos de fricción y otras estructuras que manifiestan una intensa fracturación y desplazamiento de las litologías hasta emplazarse en la litosfera superior; los fenómenos estructurales producidos durante los procesos de obducción y serpentinización, contribuyeron a acelerar el proceso de lateralización de las ultramafitas serpentinizadas.

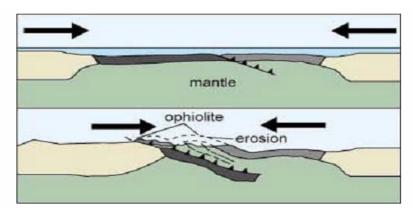


Figura N°.2. Esquema tectónico sobre el emplazamiento de las ofiolitas

Las principales estructuras representativas de este sistema son: falla Los Indios, Cayo Guam, Moa, Miraflores, Cabaña y Maquey. Rodríguez A. (1999).

Relativo a la morfotectónica, el yacimiento Punta Gorda se encuentra ubicado en el bloque El Toldo, el cual ha manifestado los máximos levantamientos relativos de la región (Rodríguez, 1998). La litología está representada por rocas del complejo máfico y ultramáfico de la secuencia ofiolítico, sobre las cuales se ha desarrollado un relieve de montañas bajas de cimas aplanadas ligeramente diseccionadas.

1.3. Características geológicas de la región

El área de estudio se enmarca dentro de la región oriental de Cuba, la cual desde el punto de vista geológico se caracteriza por la presencia de las secuencias del cinturón plegado cubano y las rocas del "neoautóctono" (Iturralde-Vinent, 1996a, 1996b, 1996c, 1998; Proenza, 1997; Proenza y otros, 1999a, 2000a, 2000b). En los macizos rocosos de Mayarí y Sagua-Moa-Baracoa afloran fundamentalmente unidades oceánicas correspondientes a las ofiolitas septentrionales, y a los arcos de islas volcánicos del Cretácico y del Paleógeno (Cobiella, 1988, 1997, 2000; Quintas, 1989; Iturralde-Vinent, 1995, 1996, 1998; Proenza, 1997, Proenza y otros, 1999c; 2000a, 2000b).

Las ofiolitas septentrionales en la región de estudio están enmarcadas dentro de la llamada faja ofiolítica Mayarí-Baracoa (Iturralde-Vinent, 1994, 1996a, 1996b, 1998). Sus principales afloramientos están representados por los macizos Mayarí-Cristal y Moa-Baracoa (Proenza, 1997; Proenza y otros, 1999a). Desde el punto vista tectónico la región se caracteriza por su gran

complejidad, predominando las estructuras disyuntivas de direcciones NW y NE (Rodríguez, 1998a, 1998b). El área de estudio se caracteriza desde el punto de vista geológico por la presencia de las secuencias del cinturón plegado cubano y del "Neoautóctono" (Iturralde Vinent, 1996).

En la región de estudio se pueden reconocer seis unidades tectónicoestratigráficas (UTE) principales:

- 1) Rocas de afinidad ofiolíticas.
- 2) Materiales volcánicos vulcano-sedimentarios asociados a un arco de islas Cretácico.
- 3) Materiales asociados a cuencas transportadas del Campaniense Tardío al Daniense.
- 4) Rocas volcánicas y vulcano-sedimentarias pertenecientes al arco de islas del Terciario.
- 5) Materiales asociados a cuencas transportadas del Eoceno Medio al Oligoceno.
- 6) Materiales asociados a un estadío neoplatafórmico "Neoautóctono" desde el Oligoceno al Reciente (Iturralde, 1999ª, y 1998, Proenza et al. 2000).

En la región de estudio, las rocas de afinidad ofiolíticas son las de mayor distribución en el área, enmarcándose dentro de la llamada faja ofiolíticas Mayarí-Baracoa (Iturralde Vinent. 1994. 1996 y 1998.). Estas ofiolitas han sido interpretadas como representativas de un sistema de cuencas de retroarcomarginal, ubicado paleogeográficamente entre la plataforma de Las Bahamas y el arco de las Antillas Mayores (Iturralde Vinent, 1994, 1996b, 1998; Cobiella, 2000).

La faja ofiolítica constituye un cuerpo alóctono tabular con una longitud de 170 Km.

Geomorfológicamente dividido en diferentes partes por el valle del río Sagua de Tánamo y las Montañas del Purial. Posee un espesor que en ocasiones sobrepasa los 1000 metros (Iturralde Vinent 1996, 1998).

La secuencia de piso a techo está compuesta por peridotitas con texturas de tectonitas, "acumulados ultramáficos", acumulados máficos, diques de diabazas y secuencias efusivas-sedimentarias. Estas ofiolitas se disponen en forma de escamas tectónicas, cabalgando las rocas vulcano-sedimentarias del arco de islas del Cretácico, las cuales están cubiertas transgresivamente por

secuencias flychoides y olistostrómicas del Maestrichtiano al Paleoceno (Fm. Mícara, y la Fm. Picota).

En ocasiones las ofiolitas están cubiertas por materiales vulcano-sedimentarios procedentes del arco de islas del Paleógeno y por secuencias terrígenas-carbonatadas más jóvenes (Quintas, 1989; Iturralde Vinent 1998; Proenza, 1997; Cobiella, 1997, 2000).

1.3.1. Macizo ofiolítico Mayarí -Baracoa

El complejo ofiolítico Mayarí-Cristal se ubica en la parte occidental de la faja ofiolíticas Mayarí-Baracoa, ocupando un área aproximada de 1200 Km² y posee una morfología tabular con un espesor de 1 a 1,5 Km. (Fonseca y otros, 1985). En él se han descrito principalmente los complejos utramáficos y diques de diabazas; en cambio la existencia del complejo de gabros es polémica y el vulcano-sedimentario no ha sido localizado todavía (Iturralde Vinent, 1996, 1998; Proenza, 1997; Proenza et al. 1999, 2000; Cobiella 2000).

Las rocas ultramáficas están constituidas predominantemente por harzburgitas, dunitas, rara veces por iherzolitas y piroxenitas, (Fonseca y otros, 1985; Nekrasov y otros, 1989; Proenza y otros, 1999). Al sur del macizo Mayarí-Cristal, se localiza el melange La Corea, la cual es una zona metamórfica de unos 25 Km² (Adamovich Chejovich, 1964; Naggy et al., 1983; Millán, 1996).

Esta zona se compone por diferentes bloques separados por una matriz serpentinítica. Predominan las rocas metamórficas de alta presión, así como metabasitas de baja presión de origen ofiolítico (Millán, 1996). Las metamorfitas de alta presión son anfibolitas areníferas y bloques aislados de esquistos glaucofánicos; además existen esquistos verdes, esquistos tremo líticos, actinolíticos, diques de pegmatitas y granitóides masivos.

En La Corea existen diferentes fasies metamórficas, y todas afloran hacia la parte sureste de la región de estudio, las que se distinguen son:

- → fasies de esquistos verdes: en ellos se asocian los esquistos micáceos, esquistos grafíticos, cuarcíferos y otros.
- → fasies de las córneas: estas fasies se encuentran mucho en los metamorfismos de contacto, en ellas se localizan los mármoles, las cuarcitas secundarias y otras.

→ Fasies de las anfibolitas: esta es la fasie donde todos los minerales se forman a alta presión y temperatura, en ella se encuentra todas las anfibolitas propiamente dichas.

En la faja ofiolítica existen diferentes cuerpos de cromitas con diferentes niveles de estructuras del corte ofiolítico. Las cromitas ricas en cromo se localizan en rocas ultrabásicas, peridotitas con texturas de tectonitas (Mayarí), y las ricas en aluminio en la denominada Moho Transition Zone (Moa – Baracoa) (Proenza, 1998; Proenza et al. 1999). Sin embargo en la zona de Sagua de Tánamo (extremo oriental del macizo Mayarí-Cristal) existen los dos tipos de cromitas, las ricas en aluminio y las ricas en cromo, todo esto es debido que Sagua de Tánamo es el lugar de depósito de estos sedimentos erosionados, es decir, es la cuenca que acumula los sedimentos de las dos grandes fuentes de suministro (Mayarí –Cristal y Moa –Baracoa).

En Mayarí - Cristal también están presentes los cuerpos de piroxenitas los cuales cortan los peridotitos y los cuerpos de cromitas (Iturralde, 1996, 1998; Proenza, 1997; Proenza y otros, 1999, 2000; Cobiella, 2000).

Los diques de diabazas de pocos centímetros de potencia se encuentran separados a una distancia de 1mts a 5 mts (Iturralde Vinent, 1996, 1998) hoy por hoy se cuestiona mucho la existencia de una secuencia de diques paralelos como las que existen en otras regiones del mundo.

1.3.2. Macizo ofiolítico Moa-Baracoa

Este macizo de origen ofiolítico se encuentra en el extremo oriental de la faja Mayarí-Baracoa, ocupando un área de 1500Km² (Proenza et al. 1999).en esta faja se han descrito varios niveles mantélicos (Jurásico-Cretácico temprano) como corticales (Hauteriviano-Campaniano) (Iturralde Vinent 1996).

En el macizo Moa-Baracoa se pueden reconocer los diferentes niveles mantélicos, niveles de gabros bandeados inferiores, niveles volcánicos discordantes, esto es según Proenza et al. (2003) y Marchesi et al. (2003).

Sin embargo en una secuencia ideal de ofiolitas los gabros de niveles superiores y los diques de diabazas no afloran, las diabazas descritas en esta región aparecen en forma de bloques tectónicos incluidos en los niveles de gabros, sobre todo en la parte superior del complejo cumulativo (Torres, 1987).

La secuencia mantélica tiene un espesor de paleomargen superior de 2.2Km de potencia, y los niveles de gabros bandeados de aproximadamente 300mts (Proenza et al. 2003).

Desde el punto de vista petrológico, las rocas que existen en el complejo ultramáfico son principalmente harzburgitas y en menor grado dunitas, también se han descrito dunitas plagioclásicas wherlitas, iherzolitas y piroxenitas (García y Fonseca, 1994; Proenza y otros, 1999).

En la región de estudio complejo vulcano-sedimentario contacta tectónicamente con los demás complejos del corte ofiolíticos (Proenza, 1997; Proenza y otros, 1999; 2000) y está representado por la Fm. Quiviján (Iturralde Vinent, 1996; 1998), la cual incluye basaltos amigdaloides y porfídicos (algunas veces con estructuras de almohadillas), con intercalaciones de hialoclasitas, tobas, capas de cherts y calizas (Quintas, 1989).

A través de una falla subhorizontal, rocas vulcanosedimentarias del arco de islas de Cretácico subyacen por debajo de las ofiolitas, aunque en otras regiones de los cuerpos ofiolíticos aparecen cubiertas por otros materiales vulcanosedimentarios pertenecientes al arco de isla del paleógeno (Fm. Sabaneta) y por secuencias terrígenas-carbonatadas más jóvenes (Quintas, 1989; Iturralde Vinent, 1996). Los principales afloramientos de la faja ofiolítica Mayarí-Baracoa están representados por los macizos Mayarí-Cristal y Moa-Baracoa (Proenza, 1998; Proenza et al., 1999).

1.3.3. Arco volcánico del Cretácico

Conjuntamente con las ofiolitas del macizo Mayarí Baracoa se encuentran las rocas volcánicas y vulcanógenas sedimentarias, estas rocas pertenecen a la formación Santo Domingo, y los materiales que poseen son tobas y tufinas, con cuerpos de lavas y calizas intercaladas. (Iturralde Vinent, 1976; Proenza y Carralero, 1994), estos materiales tienen una alta relación tectónica, debido que muchas veces los contactos coinciden con zonas que tienen una mezcla de bloques de vulcanitas perteneciente al arco de las ofiolitas.

Las rocas representativas de esta formación afloran hacia la parte centro occidental de la región de estudio (al norte y al sur de la Sierra Cristal), en la parte alta de la cuenca de Sagua de Tánamo, en la región de Farallones-Calentura y en una pequeña área de la localidad de Centeno. Los materiales de la Fm. Santo Domingo se encuentran imbricados tectónicamente con las ofiolitas de la faja Mayarí-Baracoa.

La actividad volcánica se extendió desde Aptiano al Campaniano medio (Iturralde Vinent, 1994) y fue el resultado de una subducción intraoceánica (Iturralde Vinent, 1998).

1.3.4. Características geológicas del área de estudio

En el yacimiento Punta Gorda se encuentran tres grandes conjuntos litológicos: el basamento, la corteza de meteorización laterítica y lateritas redepositadas. La litología que existe en el basamento es la peridotita serpentinizada en mayor o menor grado, por eso es que hay una media complejidad litológica. Las peridotitas presentes en el área son harzburgitas, de color azul verdoso oscuro, con contenidos variables de piroxenos rómbicos y olivinos, y tanto los piroxenos como el olivino han sido transformados al grupo de la serpentina.

En el área, la faja de serpentinita foliada y esquistosa coincide con las zonas de contacto de los mantos tectónicos. La faja ofiolítica deformada está cortada completamente por varios sistemas de fallas más jóvenes.

Las budinas, fundamentalmente son peridotitas que se presentan fracturadas y rodeadas por serpentinitas esquistosas. Estas fajas se orientan preferentemente al N60°E.

1.3.5. Caracterización de la corteza de meteorización

La corteza de meteorización está desarrollada sobre rocas peridotíticas como pueden ser harzburgitas- serpentinizadas en distintos grados y por serpentinitas, las cuales ocupan la mayor parte del yacimiento, en menor grado existen minerales friables producto del intemperismo químico de gabro olivínico, plagioclasas y anfibolitas. Ubicado el primero hacia las zonas este y norte del yacimiento y los otros dos tipos de corteza hacia la parte este del depósito mineral. Las litologías que conforman el perfil friable son, de arriba hacia abajo (Quintas et al, 2002)):

- Litología 1: Ocre estructural con concreciones ferruginosos (OICP).
 Presentan color pardo oscuro con concreciones ferruginosas que aumentan de tamaño hacia la superficie donde forman bloques de distintas dimensiones y forma.
- Litología 2: Ocre inestructural sin concreciones ferruginosos (OISP).
 Presenta color pardo oscuro y no lleva en su formación los perdigones de hierro redondeados.

- Litología 3: Ocre estructural final (OEF). Se caracteriza por sus estructuras terrosas y color pardo amarillento hasta amarillo, se distingue la estructura de la roca madre.
- Litología 4: ocre estructural inicial (OEI) es un material de color amarillento, con tonalidades rojizas y verdosas típico de una serpentinita fresca, y en el se reconoce en su estructura la roca que le dio origen.
- Litología 5: Serpentina lixiviada (SL). Las rocas como regla están manchadas de ocre. La ocretización se observa en forma de manchas de los hidróxidos de hierro. El grado de intemperismo es irregular y las más intemperizadas están representadas por rocas claras donde en forma de una red de vetillas tiene lugar la serpentinización. Son rocas friables y ligeramente compactas de color gris verdoso las cuales conservan la estructura de la roca madre.
- Litología 6: Corteza a partir de gabros (CG). Son materiales arcillosos de color pardo lustroso de diferentes tonalidades (desde pardo oscuro brillante hasta colores ladrillo y crema). Estos materiales son pobres en hierro, níquel y cobalto con contenidos perjudiciales al proceso de sílice y aluminio. Esta litología está presente en la parte este del yacimiento y en menor proporción en su parte norte.

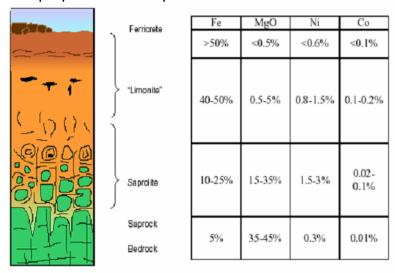


Figura N°.3. Perfil general laterítico de los suelos de la región de Moa. La dimensión vertical no esta a escala. Tomado de Muñoz, N ,2004.

2.0 Capítulo II Materiales y métodos de investigación empleados

- 2.1. Introducción.
- 2.2. Metodología aplicada en la investigación.
- 2.3. Muestreo

2.1. Introducción

En este capítulo se describen los aspectos relacionados con el muestreo y método de investigación de minerales empleados en la caracterización mineralógica del cuerpo silicatado presente en el sector septentrional del yacimiento Punta Gorda. Se tiene en cuenta que el objeto de estudio es el cuerpo mineral a partir del cual se tomaron las muestras en el campo.

2.2. Metodología aplicada en la investigación

Para comenzar a realizar la investigación lo primero que se hizo fue trazar una metodología de trabajo el cual se resumió en tres etapas.

La primera etapa consistió en realizar una búsqueda bibliográfica para poder obtener al menos toda la información básica con respecto a la zona de estudio. Fueron revisados los trabajos precedentes que existían archivados sobre el área a estudiar.

La segunda etapa es la etapa de campo, ahí se realizó un muestreo de tipo puntual y luego se analizaron las muestras macroscópicamente para ver cuáles eran los minerales que se podían ver a simple vista y tener la idea del tipo de material que se está estudiando. Después se prepararon las muestras para analizarlas mediante los equipos de Difracción de Rayos -X y Espectros Infrarrojo.

La tercera etapa es la de gabinete, consistió en procesar los datos antes obtenidos en las etapas uno y dos, en la que se usó la informática, al utilizar algunos software de computación como son los softwares del equipo de Rayos -X (Analize y Autoquant), y el del equipo infrarrojo (FTOS y FTOSPR) que mediante ellos se pudo obtener el resultado que daría fin a la investigación.

2.3. Muestreo

El cuerpo abarca un área aproximada de unos 60m², y está relacionado con varios tipos de litologías como pueden ser lateritas, serpentinitas y ultrabasitas serpentinizadas

Foto Nº.1. Vista Panorámica Cuerpo silicatado del sector septentrional del yacimiento Punta Gorda.

El tipo de muestreo que se efectuó en el cuerpo mineral fue puntual, el objeto se dividió artificialmente en cinco perfiles perspectivos. Todas las muestras

fueron representativas y se tomaron desde abajo donde se encuentra la parte silicatada hacia arriba donde se encuentra la zona laterítica oxidada.

El intervalo en que se tomó el muestreo es de aproximadamente 50cm, el peso de las muestras tomadas es de 1Kg las mismas se embolsaron en bolsos de plástico, típicos de la empresa Geominera de Oriente y se codificaron con las siglas CS (cuerpo silicatado)

Foto Nº .2. Tramo del horizonte silicatado donde se tomó la muestra CS1.

Foto No.3. Nicho donde se tomó la muestra CS1.

Foto No.4. Muestra CS1.

Muestra CS1: silicatada e imtemperizada de color blanco con algunas tonalidades verdosas, en su interior se pueden observar algunas vetillas de manganeso (Mn). A la derecha expone una apariencia arcillosa de color amarillo.

Foto No.5. Muestra CS2.

Muestra CS 2: material laterítico que sobreyace al horizonte silicatado anterior. La muestra tiene un color rojo con algunas tonalidades amarillentas, el brillo es mate y su compactación es deleznable, su granulometría es en forma de pequeños bloques de óxido de hierro con un alto grado de porosidad.

Foto Nº.6. Tramo del horizonte silicatado donde se tomó la muestra CS3, 4, 5, 5,6.

Foto No.7. Muestra CS3.

Muestra CS 3: Expone una apariencia arcillosa con un alto grado de agrietamiento, su color es amarillo con algunas tonalidades blanca, el brillo es mate, la granulometría media abarca de los 2mm de diámetro hasta los 4mm, y su compactación en muy deleznable, la muestra está bastante agrietada lo cual hace que se acelere su descomposición en el medio en que se encuentra.

Foto No.8. Muestra CS4.

Muestra CS 4: material silicatado próximo al horizonte laterítico, a un metro de la muestra CS 3. La muestra posee un color amarillo parduzco, está bastante agrietada y su compactación es deleznable, con una granulometría media de más o menos 5mm, y su brillo es mate.

Foto No.9. Muestra CS5.

Muestra CS 5: material ferruginoso típico de los ocres inestructurales.

Es una muestra ocrosa con una coloración pardo rojizo donde su granulometría varía o oscila de gruesa a fina, pero en su interior tiene algunos granos redondos que miden 7mm o 8mm lo cual podemos decir que son perdigones de hierro, el brillo de la muestra es mate y su compactación es deleznable.

Foto No.10. Muestra CS6.

Foto No.11. Muestra CS7.

A la izquierda muestra CS 6: silicatada, rodeada de material ocroso, de color verde y rojo, que al parecer es producto de una serpentinita agrietada y alterada, deleznable y en su interior tiene unas betas negras que se puede decir que es manganeso y la granulometría es bastante variada.

A la derecha muestra # 7, con un material ocroso típico del óxido de hierro, ambas contiguas una de la otra. Su color es pardo amarillento, la granulometría es fina pero en su interior se encuentran granos gruesos de color negro, lo cual pueden ser perdigones de hierro, también hay cristales de piroxenos que se encuentran en un proceso de cambio.

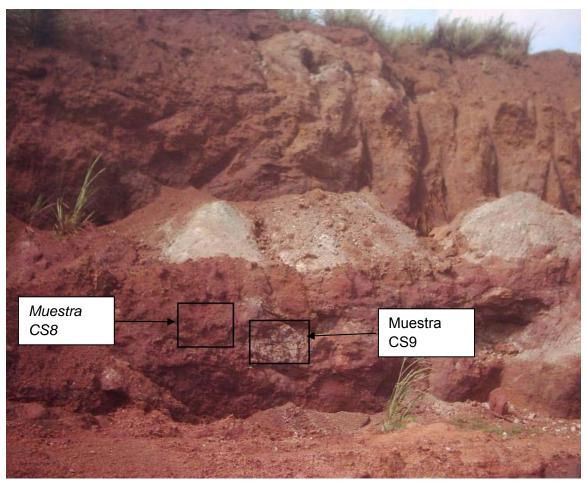


Foto No.12. Tramo del horizonte donde se tomaron las muestras CS8 y CS.9

Foto No.13. Muestra CS8.

Foto No.14. Muestra CS9.

A la izquierda muestra CS 8, material laterítico rojo, con tonalidades amarillo latón, deleznable con abundantes grietas, posee algunas betillas de manganeso, en la parte media de la muestra se encuentra una franja blanca con un brillo sedoso, y al parecer la muestra, según sus propiedades físicas se puede decir que es arcilla.

A la derecha muestra CS 9, silicatada, con porciones verde claro y blanco, el color verde es producto de la alteración de un material serpentinítico, pero también tiene algunas tonalidades amarillentas como de alteraciones de minerales de hierro.

Foto No.15. Muestra CS10.

Muestra CS 10: material silicatado, agrietado, que debido a su coloración rojiza amarillenta con tonos claros, se puede ver que a sufrido alteraciones, la muestra es bastante compacta.

Foto Nº.16. Zona de toma de las muestras CS11, 12, 13,14.

Foto No.18. Muestra CS12

Muestra CS 11: arcilla roja, con bastante óxido e hidróxido de hierro.

Muestra CS 12: con un color verde fuerte pero oscila en algunas partes de la muestra de verde fuerte a claro y posee algunas tonalidades negras, rodeada de arcilla roja, el material está muy agrietado, es deleznable con presencia de algunos óxidos e hidróxidos de hierro.

Foto No.19. Muestra CS13

Foto No.20. Muestra CS14

A la izquierda, muestra CS13: silicatada de color verde claro, con betas negras y tonalidades rojas típicas de óxidos de hierro, posee bastantes fracturas que dañan toda la muestra, pero aún así su compactación es bastante buena.

A la derecha muestra CS14: La misma presenta un alto contenido de sílice con una estructura esquelética, su color es rojo parduzco y se le observa a simple vista su composición silicatada.

Foto No.21. Vista ampliada del perfil 5. Horizonte amarillo parduzco claro.

Foto Nº .22. Muestra CS15

Muestra CS15: Extendido en la parte occidental del cuerpo silicatado en estudio. La muestra es de color amarillo parduzco con abundante betas negras pertenecientes al manganeso, el material es bastante arcilloso, la granulometría es fina y tiene una forma bien estructural sin perdigones y su contenido de óxido e hidróxido de hierro es abundante.

Foto No.23. Muestra CS16

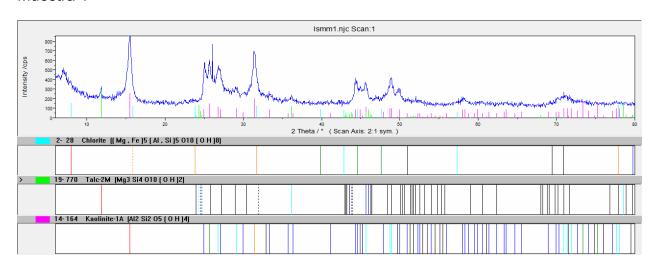
Foto No.24. Muestra CS17

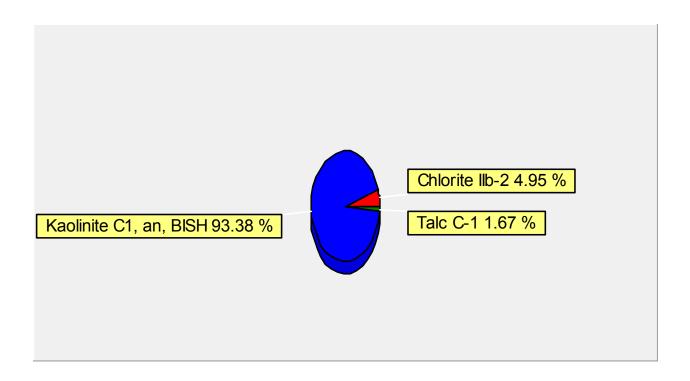
A la izquierda muestra CS 16: silicatada de color gris claro a amarillo latón con algunos tonos verde muy claro, compacta, agrietada, con una granulometría fina típica de las arcillas.

En la parte derecha muestra CS17: material de corteza ferruginosa, de color pardo rojizo, deleznable, con una granulometría que varía de 1mm a 5mm de diámetro, se podría decir que esta litología pertenece a una corteza de ocres inestructurales con perdigones.

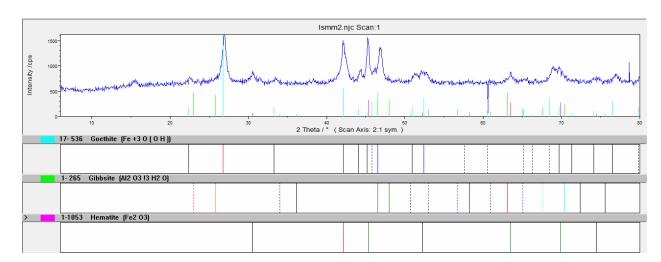
2.4. Difracción de Rayos -X.

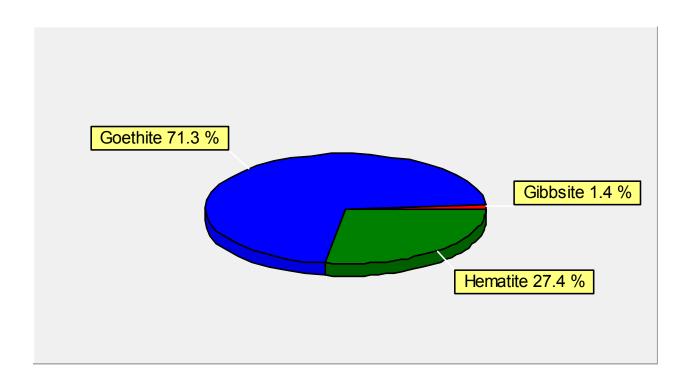
Según métodos policristalinos se utilizó un difractómetro PHILIPS modelo PW3710 con radiación de CuK∂. En el proceso de lectura e interpretación se usó el software Analize para poder identificar los minerales que existían en la muestra mineral según los difractogramas obtenidos y luego con el software Autoquant se pudo saber el por ciento (%) de cada mineral que se encontraba en la muestra.

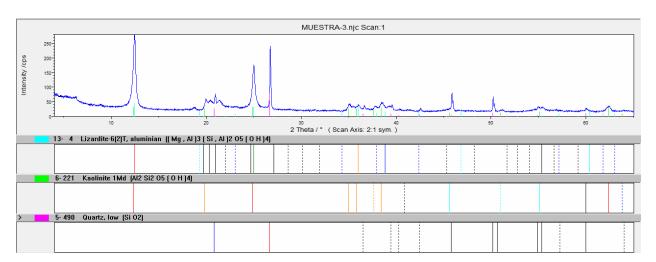

2.5. Aplicación de los Rayos -X

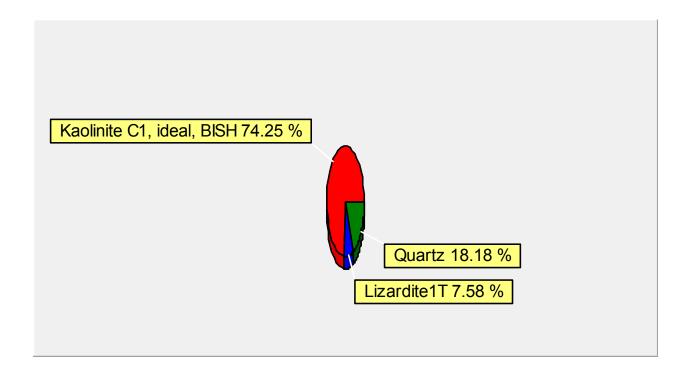

Los Rayos -X son usados para medir la distancia entre los planos sucesivos de un cristal para determinar la posición de los átomós e iones en el mismo y conocer las estructuras cristalinas de las muestras a investigar. Ellos se producen cuando los electrones que se mueven a gran velocidad chocan con los átomós de los elemento químicos.

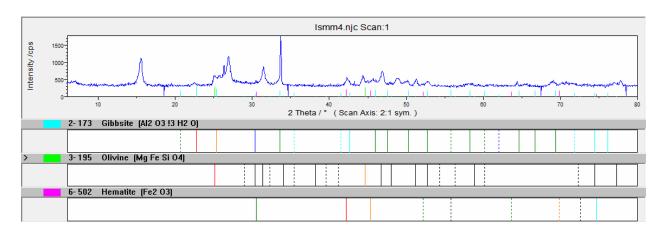
2.6. Interpretación de los distintos difractogramas pertenecientes a las muestras tomadas en el Yacimiento Punta Gorda.

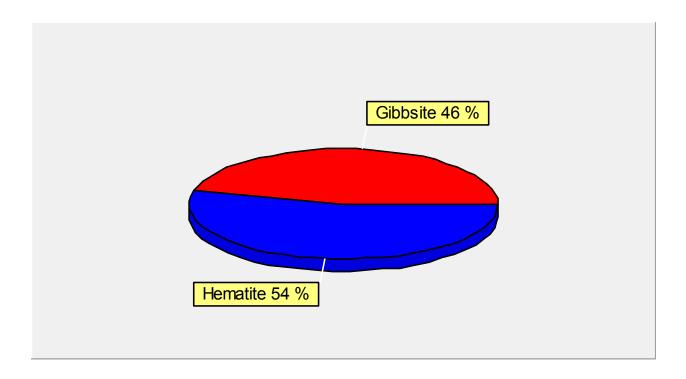

Muestra 1

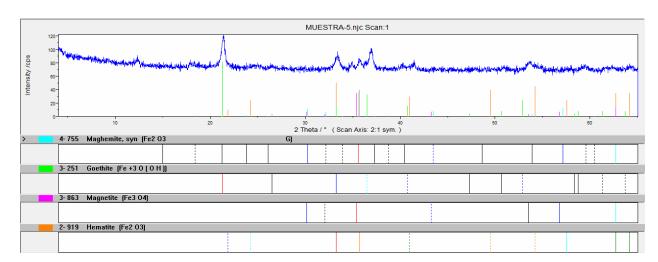


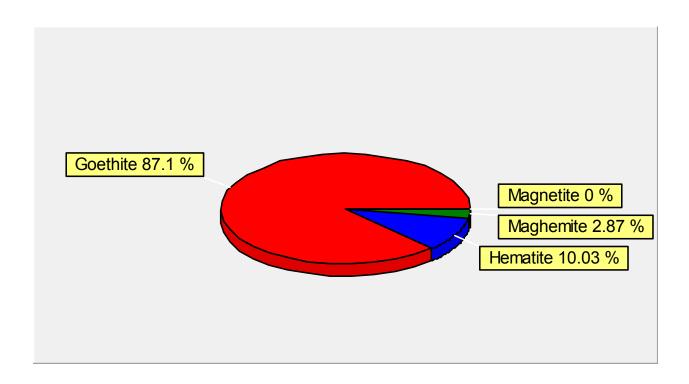


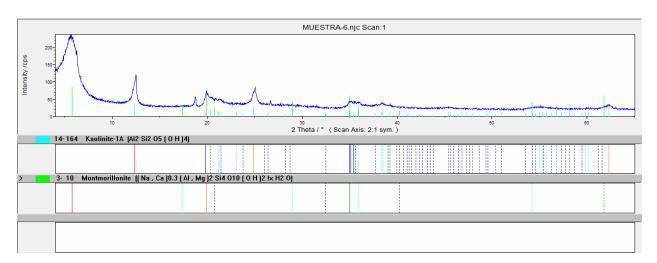

Muestra 2

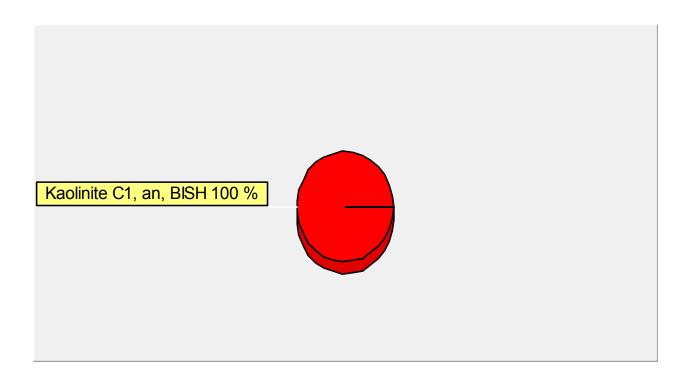


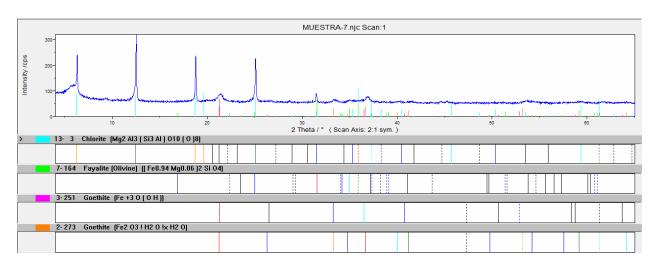


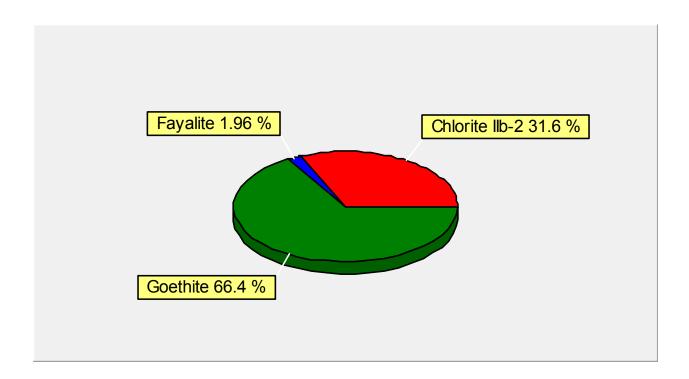


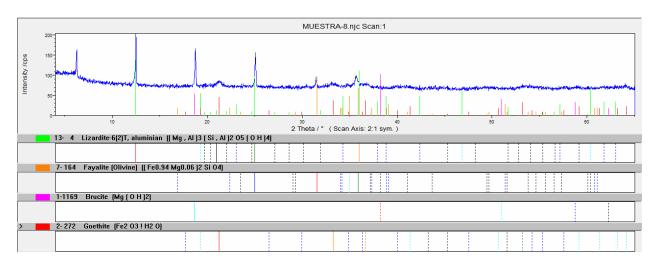


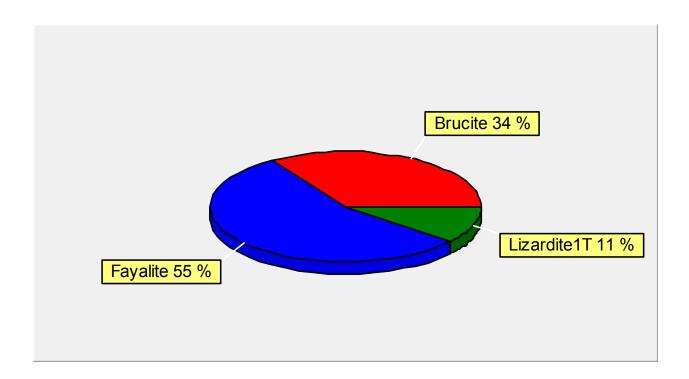


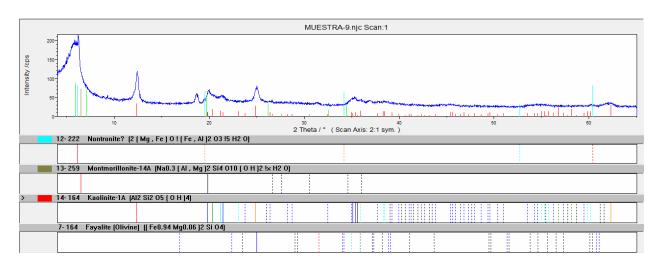


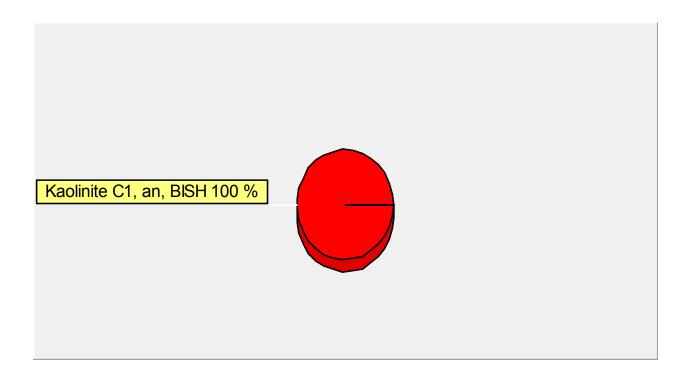


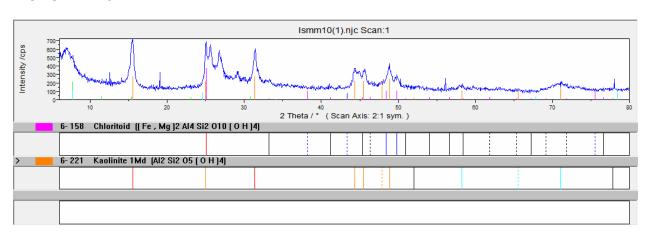


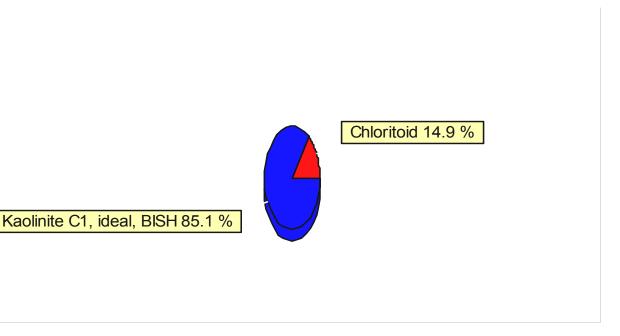


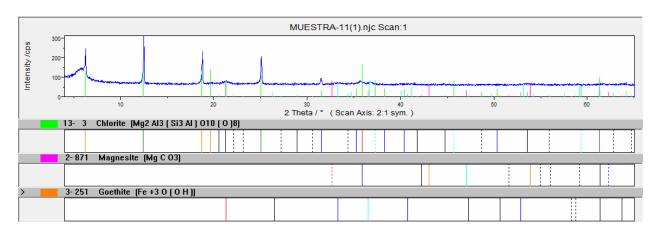


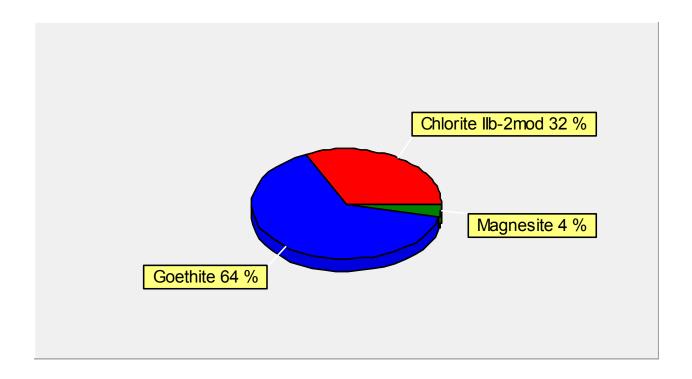




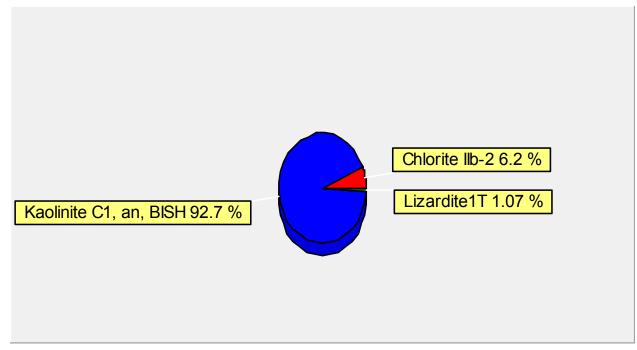


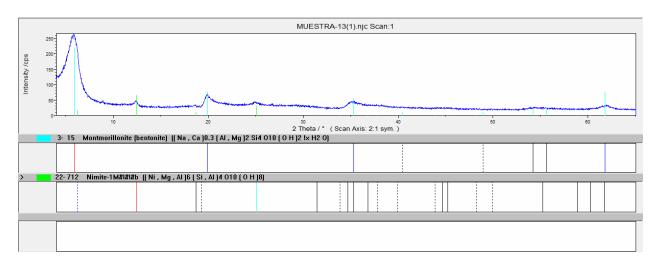


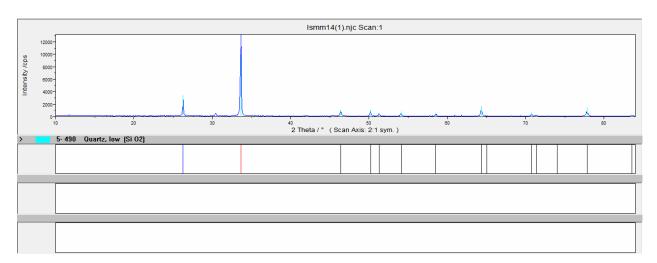


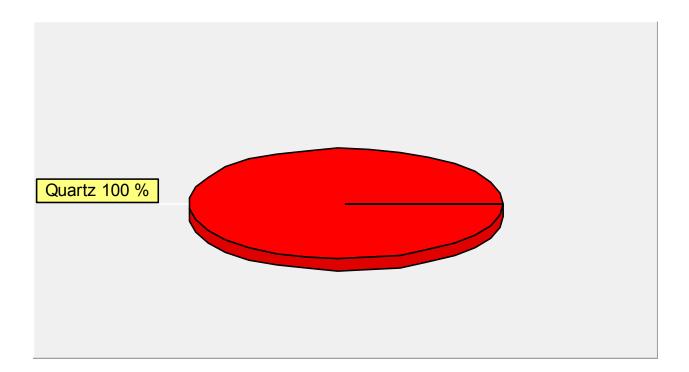


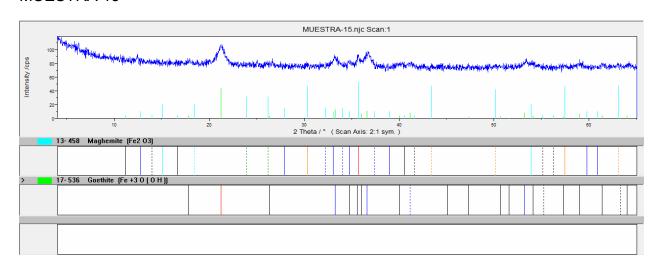


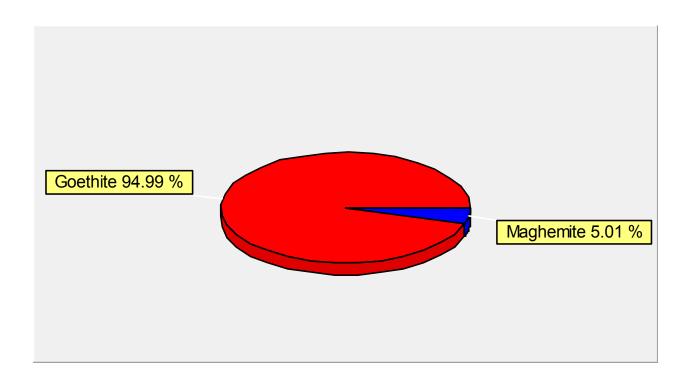


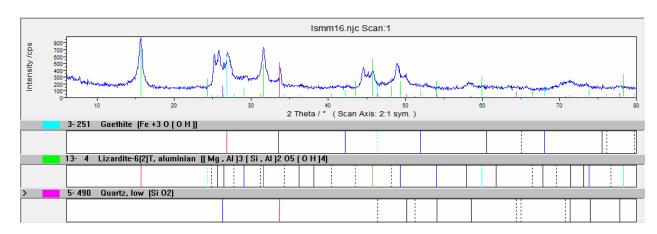


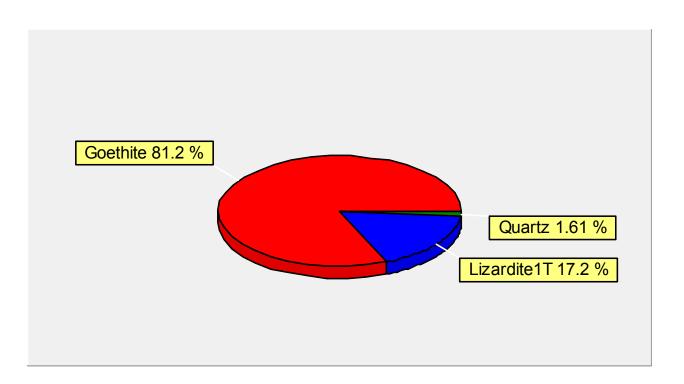


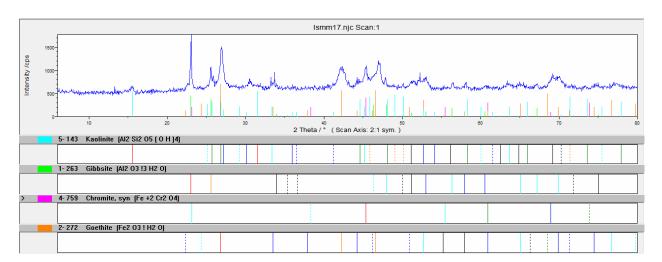


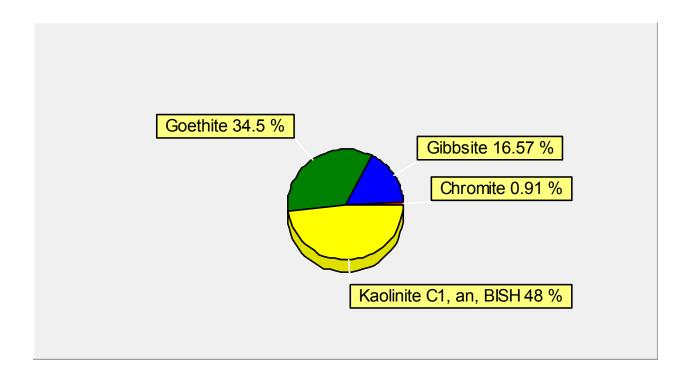












2.7. Espectroscopía infrarrojo

Se puede decir que la espectroscopía infrarrojo es la rama de la espectroscopía que trata con la parte infrarrojo del espectro electromagnético. Esta cubre la técnica de espectroscopía de absorción, así como otras técnicas espectroscópicas, puede usarse para investigar un compuesto e investigar la composición de una muestra y según el tipo de radiación se divide en tres.

espectroscopía del infrarrojo cercano	14000 a 4000cm ⁻¹
espectroscopía del infrarrojo medio	4000 a 400cm ⁻¹
espectroscopía del infrarrojo lejano	400 a 10cm ⁻¹

Radiación infrarroja: la radiación en su forma cuantitativa se define por las magnitudes de longitud de onda y frecuencia, las cuales se relacionan mediante la ecuación $c = \tilde{u} \lambda$ donde

C = es la velocidad de la luz en el vacío

ũ = frecuencia de oscilación

 λ = longitud de onda

2.8. Fuente de radiación

Para la medición de los espectros de radiación es necesario una fuente de radiación infrarrojo con un espectro ininterrumpido. Esta exigencia satisface el calentamiento de los cuerpos sólidos con una temperatura hasta 1500 °C. La radiación de tales fuentes en relación con la distribución de su intensidad aproximadamente satisface la ley de Plank para las radiaciones del cuerpo negro absoluto. Como es conocido su intensidad da lugar a un máximo y con esto aumenta muy rápido el paso desde la parte del espectro con pequeña longitud de onda a la parte con longitud de onda mayor.

2.9. Preparación de la muestra sólida

El método de espectroscopía es utilizado en cualquiera de los tres tipos de estado de agregación de la sustancia, pero en este caso solo trabajamos con la muestra sólida.

Para poder preparar la muestra tomamos un mortero de ágata y trituramos la mezcla de sal purificada de bromuro de potasio hasta pulverizarla, luego

tomamos algunos miligramos y los comprimimos en la prensa 769 YP-15A para formar una pastilla traslúcida a través de la cual puede pasar el rayo de luz del espectrómetro, de esta forma obtenemos la pastilla back groun la cual es muy necesaria para hacer la comprobación del equipo y saber si el mismo se encuentra en buen estado técnico, debido a que de la misma se obtiene el espectro patrón para comenzar los ensayos espectroscópicos.

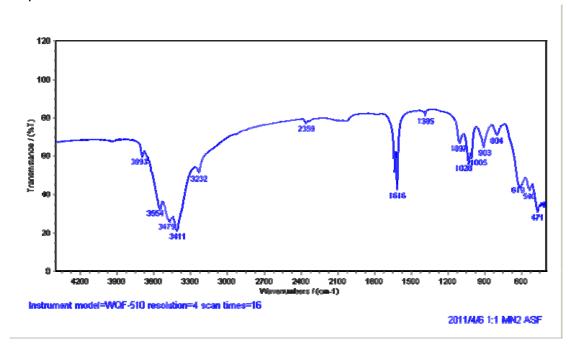
Más tarde se tomó la muestra mineral a investigar antes de ser triturada en el mortero de ágata y la pesamos en la balanza CPA 124S para llevar una buena relación de peso de la muestra con el KBr. La relación a considerar es la siguiente, debe existir una diferencia de 1mg a 100mg, lo que significa que la muestra debe de pesar 1mg y el KBr 100mg, pero en el caso de que la muestra absorba mucha radiación infrarrojo se debe de disminuir la relación de peso, la misma puede variar hasta llegar de1mg de la muestra a investigar a 1g de KBr. Luego se mezcla la muestra y se pulveriza en el mortero de ágata, después de pulverizar la muestra se toma el molde donde se elaboran las pastillas y se le agrega una pequeña cantidad de la mezcla para que la misma no quede muy densa y los rayos del espectro puedan pasar, más tarde se comprimió en una prensa 769P-15A a una presión de 10 a 15 MPa durante un minuto para que se compacte y no quede deleznable.

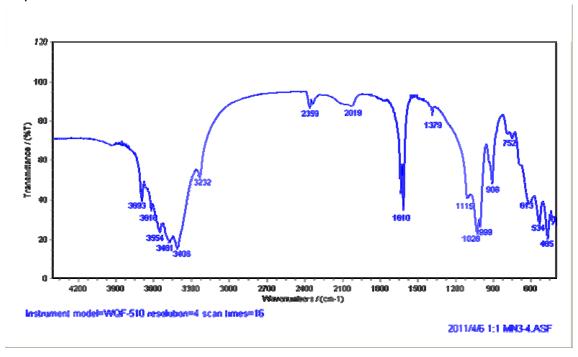
Después de haber realizado este procedimiento colocamos la muestra en el equipo emisor del rayo infrarrojo Ray Leigh WQF-510 FTIR y con el software de computación FTOS que se encuentra en la máquina SANSUN Pentium-5 se obtiene el espectro. Después para poder encontrar la longitud de onda en que se encuentran los picos, cargamos los espectros infrarrojos en el software FTOSPR, y ahí se pudo ver el valor de los picos presentes.

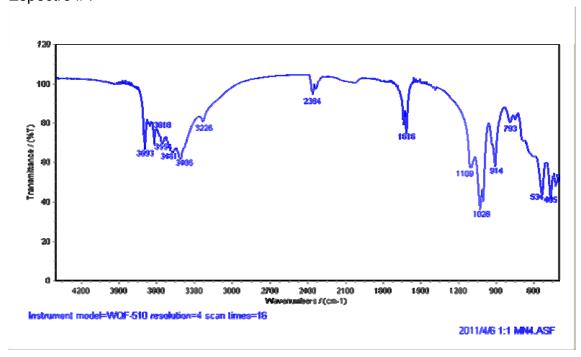
Foto Nº .25. Mortero de ágata y molde donde se confeccionan las pastillas

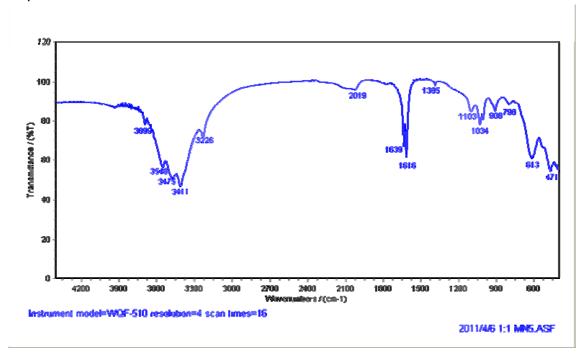
Foto Nº .26. Balanza CPA 124S donde se pesan las muestras

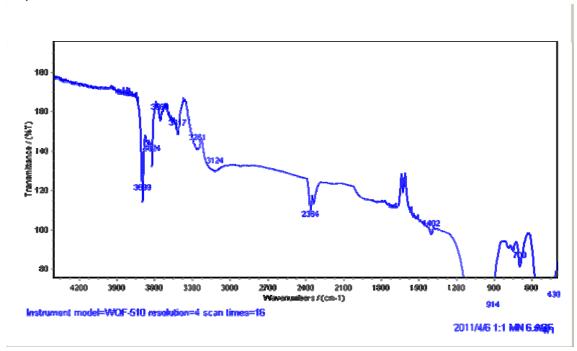

Foto No .27. Prensa 769P-15A donde se comprime la mezcla

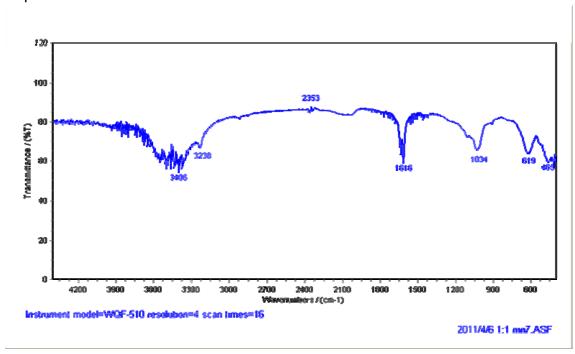

Foto No .28. Equipo Ray Leigh WQF-510 FTIR emisor de rayos infrarrojo

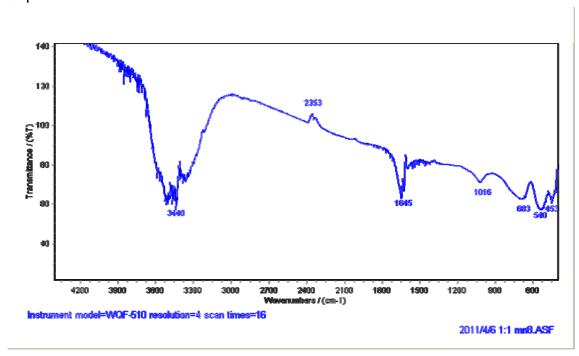

2.10. Diagramas espectroscópicos pertenecientes a las muestras tomadas en el cuerpo silicatado del Yacimiento Punta Gorda.

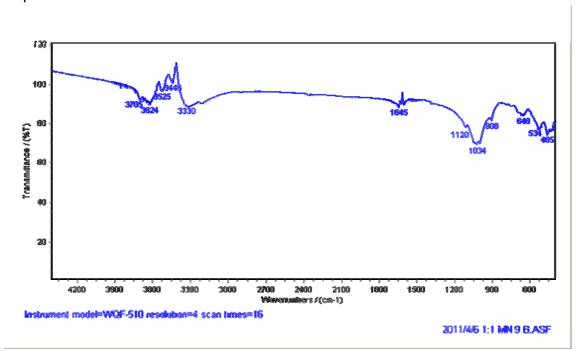

Espectro #1

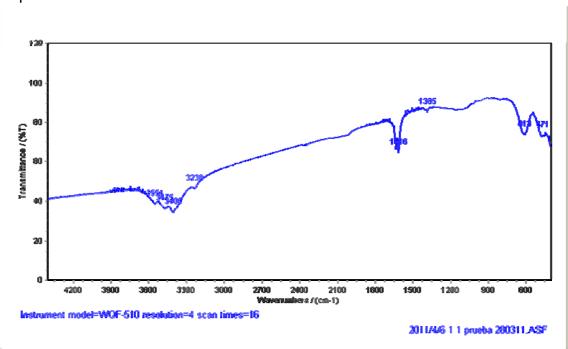


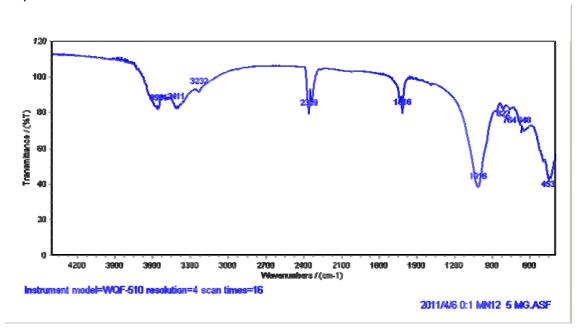


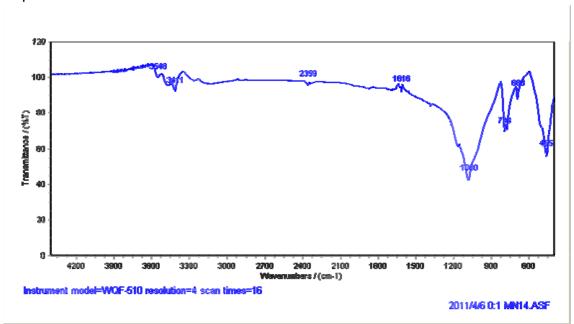


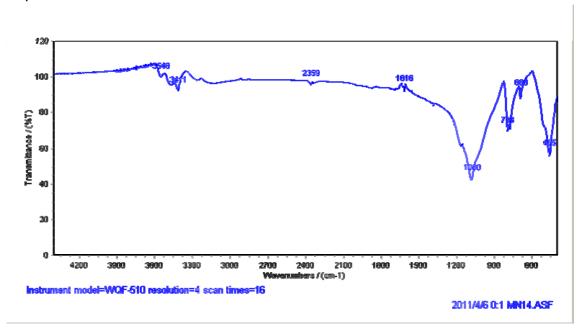


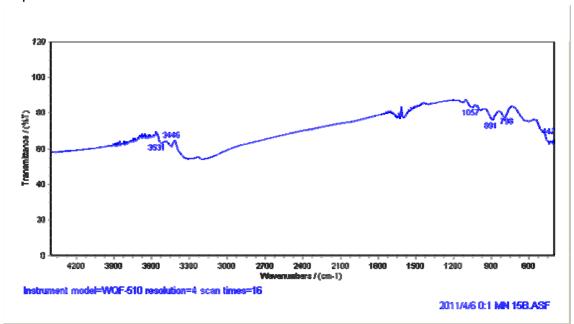


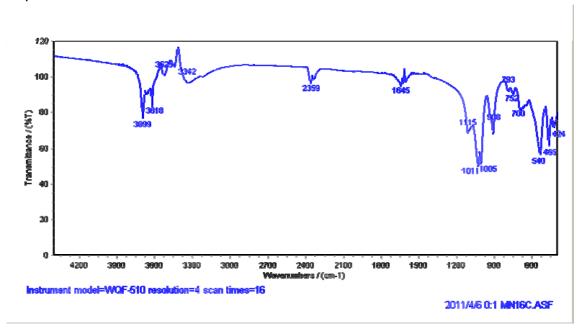


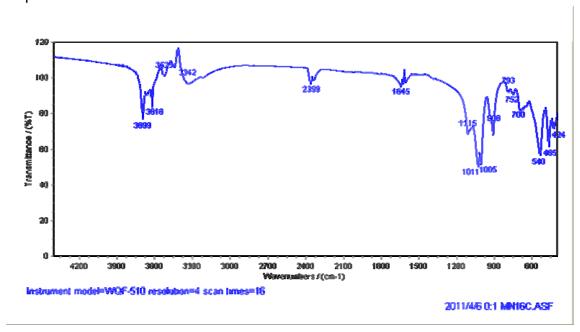












3.0. Capitulo # III Interpretación de los resultados

En este capitulo se dan a conocer los distintos resultados que se obtuvieron en los trabajos realizados, se observa una serie de valores que han sido obtenidos mediante los métodos de Difracción de Rayos – X y Espectros Infrarrojos, los mismos se exponen en tablas y deben ser interpretados para obtener las conclusiones de la investigación.

Tabla Nº. 1. Resultados de las muestras estudiadas por el método de Rayos – X

Nº Muestra	Minerales	% en la muestra	Composición Química
	chlorite	4.95	(Mg ₂ Al) ₃ (Si ₃ Al)O ₁₀ (O) ₈
1	kaolinite	93.38	$Al_2Si_2O_5(OH)_4$
	Talc	1.67	Mg ₃ Si4O ₁₀ (OH) ₂
	Gibbsite	1.40	$Al_2O_3H_2O$
2	goethite	71.30	Fe+3O(OH)
	hematite	27.40	Fe ₂ O ₃
	kaolinite	74.25	Al ₂ Si ₂ O ₅ (OH
3	Lizardite	7.58	(MgAI) ₃ (SiAI) ₂ O ₅ (OH)
	Quartz	18.18	SiO ₂
4	Gibbsite	46.00	Al ₂ O ₃ H ₂ O
·	hematite	54.00	Fe ₂ O ₃
	goethite	87.10	Fe+3O(OH)
5	hematite	10.03	Fe ₂ O ₃
	maghemite	2.87	Fe ₂ O ₃
	magnetite	0.00	Fe ₃ O ₄
6	kaolinite	100.00	Al ₂ Si ₂ O ₅ (OH) ₄
7	chlorite	31.60	(Mg ₂ Al) ₃ (Si3Al)O ₁₀ (O) ₈
	fayalite	1.96	Fe2SiO4
	goethite	66.40	Fe+3O(OH)

		1	
8	brucite	34.00	Mg(OH)₂
	fayalite	55.00	Fe (SiO) ₄
	lizardite	11.00	(MgAI) ₃ (SiAI) ₂ O ₅ (OH) ₄
9	kaolinite	100.00	Al ₂ Si ₂ O ₅ (OH) ₄
10	chloritoid	2.57	FeAl ₂ SiO ₅
10	kaolinite	97.43	Al ₂ Si ₂ O ₅ (OH) ₄
	chlorite	32.00	(Mg ₂ Al) ₃ (Si ₃ Al)O ₁₀ (O) ₈
11	goethite	64.00	Fe+3O(OH)
	magnesite	4.00	CO₃Mg
	chlorite	6.20	(Mg ₂ Al) ₃ (Si ₃ Al)O ₁₀ (O) ₈
12	kaolinite	92.70	Al ₂ Si ₂ O ₅ (OH) ₄
	Lizardite	1.07	(MgAI) ₃ (SiAI) ₂ O ₅ (OH) ₄
14	quartz	100.00	SiO ₂
15	goethite	94.99	Fe+3O(OH)
13	maghemite	5.01	Fe ₂ O ₃
	goethite	81.20	Fe+3O(OH)
16	lizardite	17.20	(MgAI) ₃ (SiAI) ₂ O ₅ (OH) ₄
	quartz	1.61	SiO ₂
	cromite	0.91	Fe+2Cr ₂ O ₄
17	gibbsite	16.57	Al ₂ O ₃ H ₂ O
	goethite	34.50	Fe+3O(OH)

Tabla N^{o} . 2. Resultados de las muestras estudiadas por el método de Espectros Infrarrojos

Nº Muestra	λ (cm ⁻¹)	Trasmitancia (%)	Minerales
	3701	15.6986	Kaolinite
	3618	15.1153	Gibbsite
	3443	29.3702	-
	1655	52.8600	-
	1119	8.3700	-
1	1038	2.5000	-
'	908	10.2700	Gibbsita
	785	43.1900	-
	746	41.9700	Clorita (Fe)
	698	25.3100	Maghemita
	536	4.1830	-
	467	5.9100	Hematite
	3693	59.480	Kaolinite
	3550	32.138	Gibbsite-
	3480	26.950	-
	3406	21.250	-
	3226	51.310	-
	2359	76.710	-
2	1614	42.760	Goethite-
	1102	66.600	-
	1031	55.700	Goethite-
	913.67	65.310	Gibbsite
	799	70.800	Goethite-
	620	43.330	Chlorite (Mg)
	471	31.400	Hematite
3	3695	40	Kaolinite
	3552	24	-
	3472	18	Gibbsite-
	3415	15	Gibbsite-
	3235	51	-
	2359	86	_
	1614	35	-
	1382	83	_
	1031	22	
	1001		<u>-</u>

	909	48.2	Gibbsite-
	615	38.35	Chlorite(Mg)-
	532	27.7	Chlorite(Al)-
	466	20.7	Hematite
	3693	66.42	Kaolinite
	3618	68.62	Dickite
	3554	70.09	
	3479	65.32	-
	3405	62.01	-
	3226	80.73	-
4	3263	95.04	-
	1615	75.96	-
	1108	57.9	-
	1028	36.69	-
	792	79.63	-
	533	43.6	Chlorite(Al)-
	464	41.8	Hematite
	3698	78.53	Kaolinite
	3549	56.14	-
	3474	51	-
	3410	47.33	-
	3226	71.25	-
	2019	96.27	-
	1638	67.1	Goethite-
5	1615	61.28	Goethite-
	1385	98.34	-
	1103	85.1	-
	1034	74.12	-
	907	85.5	Goethite-
	798	88.8	Goethite-
	614	61.6	Hematite-
	470	54.67	Kaolinite
6	3698	114	-
	3623	132	Kaolinite
	3549	115	-
	3417	148	-
	3261	140	-
	3124	129	-

	2364	109	
	1402	97.61	_
	1034	19.08	_
	913	56.88	Gibbsite-
	700	81.1	Maghemite-
	533	43.3	- Wagnernite
	470	44.03	Hematite
	429	61.28	Hematite
	3405	55.04	Tiematite
	3238	66.7	-
	2252		-
7		85.5	Coothite
7	1616	58.9	Goethite-
	1034	65.6	Goethite-
	619	63.48	Chlorite (Mg)
	464	59.08	Hematite
	3439	58.6	Gibbsite
	2352	106	-
_	1645	63.4	-
8	1016	70.7	-
	683	62.7	-
	540	57.5	Chlorite (AI)
	452	60.13	-
	3704	91.7	Kaolinite
	3623	89.09	Kaolinite
	3525	96.67	Gibbsite
	3445	100	-
	3330	88	-
9	1644	88	-
9	1120	78.5	-
	1034	69.7	-
	907	81.8	Gibbsite-
	648	84.03	-
	533	76.69	Chlorite(Al)-
	464	72.29	Hematite
11	3354	38	-
	3474	36.3	-
	3405	34.4	-
	3238	46.9	-

	1615	64.5	Goethite-
	1385	85.13	Goetilite-
			-
	614	73.13	Hematite-
	470	72.6	Hematite
	3554	81.7	Gibbsite
	3410	82.57	Gibbsite
	3232	91.5	-
	2357	79.3	-
12	1816	79.7	-
12	1016	39.05	Gibbsite-
	821	82.16	-
	791	81.9	-
	648	69.5	Maghemite
	453	40.27	-
	3629	76.8	Gibbsite
	3416	78.1	-
	2363	80.9	-
40	1646	89.3	-
13	1034	43.52	-
	671	79.7	-
	527	63.45	-
	464	56.13	Hematite
	3549	100.47	-
	3410	92.33	-
	2357	95.5	-
4.4	1615	92.3	-
14	1080	42.3	-
	798	70.37	-
	688	88.27	-
	464	56.5	Hematite
	3531	63.05	Gibbsite-
15	3445	61.8	-
	1057	82.5	Goethite
	891	76.47	Goethite-
	798	77.2	Goethite-
	447	62.6	-
16	3698	77.2	Kaolinite
10	3618	82.9	Gibbsite
	3010	02.9	Oibbaile

	3526	100.47	Gibbsite
	3341	96.4	-
	2857	96.4	-
	1644	95.18	-
	1114	68.3	-
	1028	50.4	Gibbsite-
	1005	51.25	-
	907	68.7	- Gibbsite-
	792	92.7	-
	752	90.4	-
	700.3	82.16	-
	540	56.54	Chlorite(AI)-
	424	72	Hematite-
	3698	72.4	Hematite
	3623	53.6	Margarite
	3526	32.54	Gibbsite
	3439	25.2	Gibbsita
	3376	36.2	-
	3232	57.35	-
	1615	72.8	Goethite-
17	1385	89.8	-
17	1103	74.4	-
	1034	36.2	Goethite -
	907	59.7	Gibbsita -
	803	51.6	Goethite-
	734	57.7	
	534	26.4	Chlorite(AI)-
	470	28	Hematite
	424	37.4	Hematite

Conclusiones:

Después de haber realizado los estudios de difracción de Rayos-X y Espectros Infrarrojos en las 17 muestras tomadas hemos podido llegar a las siguientes conclusiones.

- 1. En el cuerpo mineral silicatado del Yacimiento Punta Gorda se encontraron15 minerales típicos de corteza laterítica y de ellos 7 son silicatos (chlorite, kaolinite, talc, lizardite, quartz, fayalite, chloritoid).
- 2. Las muestras (1; 3; 6; 9; 10; 12) pertenecen a una corteza de arcilla caolinítica, debido a que las mismas presentan un contenido de caolinita mayor de 74%.
- 3. Las muestras (2; 7; 11; 15; 17) pertenecen a una corteza oxidada donde las fasies minerales presentes en esa corteza son los diferentes óxidos e hidróxido de hierro y aluminio, este resultado se obtuvo porque estas muestras presentan un contenido de goethite que oscila entre 34% y 94% y de minerales de aluminio (gibbsite, chlorite, lizardite) otro valor oscilante de 1.4% a 32%.
- 4. Se pudo identificar tres tipos de cloritas, las cloritas ricas en hierro (Fe), las cloritas ricas en magnesio (Mg) y las cloritas ricas en aluminio (Al). La muestra (1) presentan una clorita rica en Fe, las muestras (2;7) presentan cloritas ricas en magnesio Mg y las muestras (8;9;16;17) son la ricas en Al.
- 5. Se pudieron identificar las diferentes bandas de los minerales en el espectro infrarrojo. La goethite presenta una banda que oscila en la longitud de 1614, 1031, 907 y 800 cm⁻¹, la kaolinite tiene una banda de absorción de 3701, 3693, 3620 y 470 cm⁻¹, la hematite siempre se encuentra en una banda pequeña, presentándose siempre en el rango de los 470 y 420 cm⁻¹, la gibbsite está en el rango próximo a la kaolinite donde sus valores de longitud de onda son 3526, 3531, 3629 cm⁻¹ y disminuyendo un poco su valor, baja hasta los 900 cm⁻¹.
- 6. En cambio la clorita cambia su valor en dependencia de su afinidad por algún elemento químico, las ricas en hierro poseen una longitud de onda de 476 cm⁻¹, las ricas en magnesio se encuentran en el rango de 620 cm⁻¹, mientras que las ricas en aluminio presentan valores oscilantes de 540, 533 y 534 cm⁻¹.

Recomendaciones:

- Realizar un estudio más profundo acerca de la mineralogía de los cuerpos silicatados.
- Hacer una tabla donde se encuentren en relación los minerales de las lateritas con sus respectivas longitudes de onda.
- Que el laboratorio donde se hacen los ensayos de Espectros Infrarrojos no se vea tan restringido con la sal bromuro de potasio (KBr) para que los estudios se realicen con mayor calidad y eficiencia.

Bibliografía

- 1. Almaguer A, Zamarsky V.: Estudio de la distribución del Fe, Ni y Co en los tamaños de granos que componen el perfil de las cortezas de intemperismo de las rocas ultrabásicas hasta su desarrollo laterítico y su relación con la mineralogía. Revista Minería y Geología No. 2/93. 17-23. 10.1993.
- 2. Beukes, J. P., Giesekke, E. W., Elliot, W.: Nickel retention by goethite and hematite. Minerals Engineering. Vol. 13. No. 14-15. pp 1573-1579. 2000.
- 3. Becquer, C; Quantin, S; Rotte-Capet, J; Granbaja, C; Mustin, C; Herbillon, A.J: Sources of tracemetals in Ferralsols in New Caledonia. British Society of Soil Science. European Journal of Soil Science. 1-14. 2005.
- 4. Blume, H. P. and U. Schwert mann: Genetic Evaluation of Profile Distribution of Aluminum, Iron, and Manganese Oxides___6oil Sci. Soc. Am. J. 33: 438-444. 1969.
- 5. Brand N.W., Butt C.R.M., Elias M: Nickel laterites: Classification and features. AGSO Journal of Australian Geology and Geophysics, 17, 81-88. 1998.
- 6. Caron, M. H.: Ammonian leaching of nickel and cobalt ores. Transactions of AIME 188, 67-90.1950.
- 7. Chukhrov, F. P., Gorshkov, V. A., Drits, V. A.: Supergenic manganese Hydrous oxides. 208 p.Nauka. Moscow. 1989.
- 8. Dalvi, Ashok D.; W. Gordon Bacon; Robert C. Osborne: The Past and the Future of Nickel Laterites. PDAC 2004. International Convention. Trade Show & Investors Exchange. March 7-10. 2004.

- 9. Da Silva E. F., De Oliveira S. M. B.; Fonseca E.C.: Extracción química selectiva secuencial sobre el estudio de la distribución del Co, Cr, Zn y Ni en muestras del yacimiento Punta Gorda. Geochimica Brasiliensis. 14. 1. 41-50. 2000.
- 10. De Carvalho e Silva, M. L M., Oliveira S. M. B: As fases portdoras de niquel do minerio laterítico de niquel do vermello, Serra dos Carajas (PA). Revista Brasileira de Geociencias. Vol. 25. pp. 69-78.1995.
- 11. De Carvahlo M. L. M., Silva E., Partiti C. S. M., Enzweiler J., Petit, S., Netto, S. M., Oliveira, S. M.B.: Characterization of Ni-contaning goethites by Mosbauer Spectroscopy and other techniques. Hyperfine Interactions. 00: 1-18. 2002.
- 12. Galí, S., Proenza, J.A., Labrador, M. Melgarejo, J.C., Tauler, E., Muñoz-Gómez, N., Rojas-Purón, A., Orozco-Melgar, O. (2006): Caracterización mineralógica de los perfiles laterítico tipo óxido:yacimiento Punta Gorda (Cuba Oriental). /Macla, 6, 197-199.
- 13. Guest, Christopher A, Darrell G. Schulze, Ian A. Thompson and Don M. Huber_ Correlating Manganese X-Ray Absorption Near-Edge Structure Spectra with Extractable Soil Manganese. DIVISION S-2—SOIL CHEMISTRY. Soil Science Society of America Journal 66:1172-1181 (2002).
- 14. Gleeson S. A, Butt C. R. M, Elias M. Nickel laterites: A Review. SEG Newsletter 54, 11-18.2003.
- 15. Gyamarti P.; I. Méndez M. Lay. 1997. Caracterización de las rocas del arco de islas Cretácico en la zona Estructuro-Facial Nipe-Cristal-Baracoa. En: G.F. Furrazola, K.E. Núñez-Cambra (eds.). Estudios sobre Geología de Cuba, Ciudad de La Habana, Instituto de Geología y Paleontología. 357-364p.

- 16. Guest, Christopher A, Darrell G. Schulze, Ian A. Thompson and Don M. Huber_ Correlating Manganese X-Ray Absorption Near-Edge Structure Spectra with Extractable Soil Manganese. DIVISION S-2—SOIL CHEMISTRY. Soil Science Society of America Journal 66:1172-1181 (2002).
- 17. Iturralde-Vinet, M. A.: Ofiolitas y arcos volcánicos de Cuba. IGCP Project 364. SpecialContribution. No 1. 1996.
- 18. Iturralde-Vinet, M. A.: Ofiolitas y arcos volcánicos de Cuba. IGCP Project 364. Special Contribution. No 1. 1996.
- 19. Iturralde-Vinent M.A. 1996a. Geología de las Ofiolitas de Cuba. En: Iturralde-Vinent M. (ed.). Ofiolitas y arcos volcánicos de Cuba. IGCP Project 364. Special contribution n.1. 83-120p.
- 20. Iturralde-Vinent M.A. 1996b. Introduction to cuban Geology and Tectonics. En: Iturralde-Vinent M. (ed.). Ofiolitas y arcos volcánicos de Cuba. IGCP Project 364. Special contribution n.1. 3-35p.
- 21. Iturralde-Vinent M.A. 1996c. Cuba: el arco de islas volcánicas del Cretácico. En: M. Iturralde-Vinent (ed.). Ofiolitas y arcos volcánicos de Cuba. IGCP Project 346. 179-189p.
- 22. Iturralde-Vinent M.A. 1998. Sinopsis de la constitución geológica de Cuba. Acta Geológica Hispana 33 (1-4). 9-56p.
- 23. Kim, Jae Gon; Joe B. Dixon, Charles C. Chusuei and Youjun Deng_6RLO_6FLHQFH_6RFLHW_RI_\$PHULFD_-RXUQDO 66:661-670. Oxidation of Chromium (III) to (VI) by Manganese Oxides. DIVISION S-9- SOIL MINERALOGY. 2002.

- 24. Labrador, M., Proenza, J.A., Galí, S., Melgarejo, J.C., Tauler, E., Rojas-Purón, A., Muñoz-Gómez, N., Rodríguez-Vega, A. (2006): Minerales de Mn-Co-Ni en las lateritas de Cuba Oriental:resultados preliminares. /Macla/, 9, 281-284.
- 25. Lavaut Copa, W.: Tendencias geológicas del intemperismo de las rocas ultramáficas en Cuba Oriental. . Revista Mineria y Geología. Vol. 15. pp 9-16. 1998.
- 26. Liu, F. C. Colombo, P. Adamo, J. Z. He and A. Violante._Trace Elements in Manganese-Iron Nodules from a Chinese Alfisol . Soil Science Society of America Journal 66:661-670 (2002).DIVISION S-9—SOIL MINERALOGY.
- 27. Manceau A, Gorshkov, A. I., Drits V. A.: Structural chemistry of Mn, Fe, Co and Ni in manganese hydrous oxides: Part I. Information from XANES spectroscopy. Am. Mineral. 77: 1173-1144. 1992.
- 28. Manceau A, Tamura, N., Marcus, M. A., MacDowell, A. A., Celestre, R. S., Sublett, R. E., Sposito, G., Padmore, H. A.: Deciphering Ni sequestration in soil ferromanganese nodules by combining X-ray fluorescence, absorption, and diffraction at micrometer scales of resolution. Am. Mineral. 87: 1494-1499. 2002.
- 29. Negra, Christine, Donald S. Ross, and Antonio Lanzirotti: Soil Manganese Oxides and Trace Metals: Competitive Sorption and Microfocused Synchrotron X-ray Fluorescence Mapping_ Soil Sci. Soc. Am. J. 69: 353-361. 2005.
- 30. Oliveira, S.M.B.: Estado actual de conocimiento de los minerales lateríticos de Ni en Brasil y El Mundo. Rev. IG, Sao Paulo, 11(2), 49-57, jul-dez. 1990.

- 31. Oliveira, S.M.B; de Moya Partini, C.S., Enzwelieler, J: Ochreous laterite: a nickel ore Punta Gorda, Cuba. Journal South American Earth Science. 34. 307 –317. 2001.
- 32. Peacock, Caroline L., Sherman, David M. Crystal-chemistry of Ni in marine ferromanganese crusts and nodules_American Mineralogist. 92: 1087-1092. 2007.
- 33. Rodríguez, Joelis: Ileana Cabrera, José A. Alonso, Bárbara Martín (2001): Acerca del primer hallazgo del mineral Ernieniquelita NiMn3O7.3H20 en Cuba. TECNOMAT/2001.
- 34. Sobol S.I.: Composición de las lateritas de Moa y su influencia sobre los procesos de lixiviación de minerales por ácidos sulfúrico en autoclaves. Revista Tecnológica. No. 5 y 6. 17-23. 1968.
- 35. Vera Sardiñas, L.O.: Procedimiento para la determinación de las redes racionales de exploración de los yacimientos lateríticos de níquel y cobalto en la región de Moa. Tesis doctoral.ISMM, Moa. 111 p. 2001.
- 36. Voskresenskaya, N, Cordeiro, C: Hallazgo de Elizabet inskita en las formaciones ocrosas de la corteza de intemperismo del yacimiento Levisa, Holguín. revista Minería y Geología 3/86. pp 53-62.1986.

Anexos:

No	d_Fit(Å)	Ang-parab	Ang-COG	Low Limit	Upp. Limit
1	15.7968	7.0267	6.7683	6.1000	7.3000
2	15.1028	7.3500	7.3771	7.3000	7.5500
3	14.6362	7.5847	7.5930	7.5000	7.7500
4	13.9740	7.9447	7.8998	7.6500	8.1500
5	13.4488	8.2554	8.2873	8.1500	8.4500
6	13.0625	8.5000	8.5838	8.4500	8.7500
7	12.6022	8.8111	8.9511	8.6500	9.2000
8	11.9507	9.2924	9.2662	9.2000	9.4000
9	11.7346	9.4639	9.4580	9.3500	9.5500
10	11.6364	9.5440	9.6377	9.5000	9.9500
11	11.0957	10.0103	9.9600	9.7000	10.2000
12	10.6964	10.3850	10.5055	10.1500	10.8000
13	10.1528	10.9426	10.9524	10.1500	11.0500
14	9.8763	11.2500	11.1789	11.0000	11.3000
15	9.3876	11.8376	11.8131	11.4000	12.0000
16	9.2264	12.0452	12.5779	11.9500	13.2500
17	8.3440	13.3246	13.3314	13.1500	13.4500
18	8.2585	13.4632	13.5257	13.4500	13.6000
19	7.9932	13.9122	13.8462	13.5500	14.1000
20	7.8625	14.1445	14.1542	13.9500	14.3000
21	7.1682	15.5227	15.4842	14.2000	16.6000
22	7.1682	15.5227	15.4842	14.2000	16.6000
23	7.1682	15.5227	15.4842	14.2000	16.6000
24	6.6839	16.6550	16.8478	16.5000	17.2500
25	6.4365	17.3000	17.2971	17.2500	17.4000
26	6.3708	17.4799	17.4723	17.3500	17.6000
27	6.1954	17.9788	17.9094	17.6000	18.2500
28	6.0884	18.2975	18.3170	17.6000	18.4500
29	5.9886	18.6050	18.5760	18.4000	18.7500
30	5.8809	18.9490	19.0031	18.7000	19.3500
31	5.7360	19.4321	19.3988	19.2500	19.6000
32	5.6738	19.6474	19.6034	19.4500	19.7500
33	5.6374	19.7756	19.7965	19.7000	20.0000
34	5.5546	20.0733	20.1236	19.8500	20.3500
35	5.4402	20.5000	20.5442	20.4500	20.7500
36	5.3616	20.8036	20.8105	20.5500	20.9500
37	5.3067	21.0215	21.0551	20.9000	21.1500

-	1	1	1		1
38	5.2667	21.1829	21.2276	21.0500	21.5000
39	5.0723	22.0045	21.8464	21.3000	22.4000
40	4.9587	22.5154	22.6001	22.1000	23.0000
41	4.8293	23.1266	23.0902	22.7000	23.2000
42	4.7811	23.3632	23.3222	22.7000	23.4500
43	4.7537	23.5000	23.5057	23.4000	23.5500
44	4.7338	23.6000	23.7031	23.5500	23.8500
45	4.4638	25.0499	25.1027	23.9500	25.4500
46	4.4638	25.0499	25.1027	23.9500	25.4500
47	4.3591	25.6617	25.6690	25.3000	26.0000
48	4.3591	25.6617	25.6690	25.3000	26.0000
49	4.3591	25.6617	25.6690	25.3000	26.0000
50	4.2959	26.0457	26.0560	25.9000	26.2500
51	4.2552	26.2992	26.3787	26.1000	26.4500
52	4.1769	26.8015	26.8558	26.4000	27.5000
53	4.1769	26.8015	26.8558	26.4000	27.5000
54	4.0655	27.5500	27.8384	27.5000	28.2500
55	3.9505	28.3688	28.3726	28.2500	28.5500
56	3.9114	28.6588	28.7142	28.5000	28.9000
57	3.8635	29.0212	29.0331	28.7000	29.1500
58	3.8635	29.0212	29.0331	28.7000	29.1500
59	3.8451	29.1633	29.3182	28.7000	29.6500
60	3.8451	29.1633	29.3182	28.7000	29.6500
61	3.7221	30.1500	30.0301	29.6000	30.4000
62	3.6573	30.6965	30.6124	30.5000	30.8000
63	3.5797	31.3794	31.4176	30.7000	32.3500
64	3.5797	31.3794	31.4176	30.7000	32.3500
65	3.5797	31.3794	31.4176	30.7000	32.3500
66	3.5797	31.3794	31.4176	30.7000	32.3500
67	3.4686	32.4112	32.4067	32.3000	32.5000
68	3.4625	32.4705	0.0000	32.5000	33.1000
69	3.3934	33.1500	33.1446	33.1000	33.2000
70	3.3772	33.3138	33.3921	33.2000	33.6500
71	3.3772	33.3138	33.3921	33.2000	33.6500
72	3.2888	34.2365	34.0997	33.8500	34.3500
73	3.2553	34.6000	34.6905	34.5500	34.9000
74	3.1879	35.3548	35.5443	35.0500	35.9500
75	3.1179	36.1757	36.2366	36.0500	36.7000
76	3.1179	36.1757	36.2366	36.0500	36.7000
77	3.1179	36.1757	36.2366	36.0500	36.7000
78	3.0709	36.7500	36.6420	36.5000	36.8000
79	3.0628	36.8500	37.1624	36.8000	37.6000

80	2.9995	37.6567	37.6825	37.6000	37.7500
81	2.9850	37.8461	37.8527	37.7500	38.3500
82	2.9451	38.3794	38.2371	37.9000	38.5000
83	2.9151	38.7901	38.6891	38.4500	38.9500
84	2.9005	38.9927	39.1222	38.8500	39.4000
85	2.8579	39.5983	39.5776	39.0500	39.8000
86	2.8579	39.5983	39.5776	39.0500	39.8000
87	2.8406	39.8491	39.8798	39.6500	40.0000
88	2.8406	39.8491	39.8798	39.6500	40.0000

2				
d_Fit(A1)	Ang-parab	Ang-COG	Low Limit	Upp. Limit
17.578	6.3139	6.3846	6.2	6.6
14.0537	7.8995	7.59	6.35	10.45
10.5738	10.5057	10.2658	9.8	10.8
10.2653	10.8224	11.0962	9.8	11.5
8.5834	12.9513	12.5576	11.85	13.1
7.9099	14.0593	13.7891	13	14.8
7.4886	14.8546	14.8441	14.75	15.1
7.158	15.545	15.5658	14.9	18.35
6.0554	18.3981	18.6611	17.9	19.55
5.6804	19.6243	19.7307	18.45	20.25
5.497	20.2859	20.2728	18.45	20.5
5.0171	22.25	21.4193	20.4	22.3
4.9649	22.4869	22.8245	22.3	23.45
4.9649	22.4869	22.8245	22.3	23.45
4.9649	22.4869	22.8245	22.3	23.45
4.593	24.3346	24.3634	23.85	24.85
4.3115	25.95	25.5704	24.4	26
4.2551	26.3	26.2632	24.4	26.35
4.1574	26.9297	26.9208	26.1	29.25
3.8281	29.2956	29.3732	29.1	29.5
3.6749	30.5462	30.3835	29.35	31
3.6749	30.5462	30.3835	29.35	31
3.6749	30.5462	30.3835	29.35	31
3.5742	31.4286	31.5609	31.1	32.1
3.3687	33.4	33.3728	32.65	34.05
3.3687	33.4	33.3728	32.65	34.05
3.2237	34.95	34.5732	34.15	35.15
3.136	35.9605	36.2542	35	37.4
2.9862	37.8306	37.8039	35	38.25
2.9514	38.2944	38.4804	37.5	39.45
2.8644	39.5054	39.5233	39.3	39.75
2.6932	42.1316	42.1824	39.3	43.95
2.6932	42.1316	42.1824	39.3	43.95
2.6932	42.1316	42.1824	39.3	43.95
2.6932	42.1316	42.1824	39.3	43.95
2.5623	44.396	44.2997	43.45	44.85
2.5623	44.396	44.2997	43.45	44.85
2.5147	45.2825	45.2857	44.5	46.35
2.5147	45.2825	45.2857	44.5	46.35
2.5147	45.2825	45.2857	44.5	46.35
	d_Fit(A1) 17.578 14.0537 10.5738 10.2653 8.5834 7.9099 7.4886 7.158 6.0554 5.6804 5.497 5.0171 4.9649 4.9649 4.593 4.3115 4.2551 4.1574 3.8281 3.6749 3.6749 3.6749 3.6749 3.6749 3.5742 3.3687 3.2237 3.136 2.9862 2.9514 2.8644 2.6932 2.6932 2.6932 2.6932 2.5623 2.5623 2.5147 2.5147	d_Fit(A1) Ang-parab 17.578 6.3139 14.0537 7.8995 10.5738 10.5057 10.2653 10.8224 8.5834 12.9513 7.9099 14.0593 7.4886 14.8546 7.158 15.545 6.0554 18.3981 5.6804 19.6243 5.497 20.2859 5.0171 22.25 4.9649 22.4869 4.9649 22.4869 4.9649 22.4869 4.9649 22.4869 4.9649 22.4869 4.593 24.3346 4.3115 25.95 4.2551 26.3 4.1574 26.9297 3.8281 29.2956 3.6749 30.5462 3.5742 31.4286 3.3687 33.4 3.2237 34.95 3.136 35.9605 2.9862 37.8306 2.9514 38.2944	d_Fit(A1) Ang-parab Ang-COG 17.578 6.3139 6.3846 14.0537 7.8995 7.59 10.5738 10.5057 10.2658 10.2653 10.8224 11.0962 8.5834 12.9513 12.5576 7.9099 14.0593 13.7891 7.4886 14.8546 14.8441 7.158 15.545 15.5658 6.0554 18.3981 18.6611 5.6804 19.6243 19.7307 5.497 20.2859 20.2728 5.0171 22.25 21.4193 4.9649 22.4869 22.8245 4.9649 22.4869 22.8245 4.9649 22.4869 22.8245 4.9649 22.4869 22.8245 4.9649 22.4869 22.8245 4.9649 22.4869 22.8245 4.9649 22.4869 22.8245 4.9649 22.4869 22.8245 4.9649 32.43346 24.3634	d_Fit(A1) Ang-parab Ang-COG Low Limit 17.578 6.3139 6.3846 6.2 14.0537 7.8995 7.59 6.35 10.5738 10.5057 10.2658 9.8 10.2653 10.8224 11.0962 9.8 8.5834 12.9513 12.5576 11.85 7.9099 14.0593 13.7891 13 7.4886 14.8546 14.8441 14.75 7.158 15.545 15.5658 14.9 6.0554 18.3981 18.6611 17.9 5.6804 19.6243 19.7307 18.45 5.0171 22.25 21.4193 20.4 4.9649 22.4869 22.8245 22.3 4.9649 22.4869 22.8245 22.3 4.9649 22.4869 22.8245 22.3 4.593 24.3346 24.3634 23.85 4.3115 25.95 25.5704 24.4 4.2551 26.3 26.2632 <t< td=""></t<>

2.5147	45.2825	45.2857	44.5	46.35
2.4332	46.8878	46.8551	46.3	47.8
2.4332	46.8878	46.8551	46.3	47.8
2.3863	47.8662	49.0534	47.45	50.5
2.3863	47.8662	49.0534	47.45	50.5
2.2387	51.2422	51.2721	50.5	51.85
2.2387	51.2422	51.2721	50.5	51.85
2.204	52.1087	52.5279	51.85	53.5
2.204	52.1087	52.5279	51.85	53.5
2.204	52.1087	52.5279	51.85	53.5
2.136	53.899	54.7863	53.6	56
1.9934	58.1081	57.4884	56.1	59.55
1.9934	58.1081	57.4884	56.1	59.55
1.9468	59.6364	59.6504	58.75	60.6
1.8435	63.35	62.1586	60.6	63.4
1.8435	63.35	62.1586	60.6	63.4
1.8435	63.35	62.1586	60.6	63.4
1.8435	63.35	62.1586	60.6	63.4
	2.4332 2.4332 2.3863 2.3863 2.2387 2.2387 2.204 2.204 2.204 2.136 1.9934 1.9934 1.9468 1.8435 1.8435	2.4332 46.8878 2.4332 46.8878 2.3863 47.8662 2.3863 47.8662 2.2387 51.2422 2.204 52.1087 2.204 52.1087 2.204 52.1087 2.136 53.899 1.9934 58.1081 1.9468 59.6364 1.8435 63.35 1.8435 63.35 1.8435 63.35	2.4332 46.8878 46.8551 2.4332 46.8878 46.8551 2.3863 47.8662 49.0534 2.3863 47.8662 49.0534 2.2387 51.2422 51.2721 2.2387 51.2422 51.2721 2.204 52.1087 52.5279 2.204 52.1087 52.5279 2.136 53.899 54.7863 1.9934 58.1081 57.4884 1.9934 58.1081 57.4884 1.9468 59.6364 59.6504 1.8435 63.35 62.1586 1.8435 63.35 62.1586 1.8435 63.35 62.1586	2.4332 46.8878 46.8551 46.3 2.4332 46.8878 46.8551 46.3 2.3863 47.8662 49.0534 47.45 2.3863 47.8662 49.0534 47.45 2.2387 51.2422 51.2721 50.5 2.2387 51.2422 51.2721 50.5 2.204 52.1087 52.5279 51.85 2.204 52.1087 52.5279 51.85 2.204 52.1087 52.5279 51.85 2.136 53.899 54.7863 53.6 1.9934 58.1081 57.4884 56.1 1.9934 58.1081 57.4884 56.1 1.9468 59.6364 59.6504 58.75 1.8435 63.35 62.1586 60.6 1.8435 63.35 62.1586 60.6 1.8435 63.35 62.1586 60.6

No	d_Fit(A1)	Ang-parab	Ang-COG	Low Limit	Upp. Limit
1	21.7231	4.0643	5.0178	4.0339	8.8959
2	7.1021	12.4532	12.4501	6.3459	15.6959
3	7.1021	12.4532	12.4501	6.3459	15.6959
4	7.1021	12.4532	12.4501	6.3459	15.6959
5	7.1021	12.4532	12.4501	6.3459	15.6959
6	7.1021	12.4532	12.4501	6.3459	15.6959
7	4.4451	19.9586	20.2725	16.6819	20.8639
8	4.4451	19.9586	20.2725	16.6819	20.8639
9	4.2312	20.9787	20.9616	16.6819	24.4169
10	4.2312	20.9787	20.9616	16.6819	24.4169
11	4.2312	20.9787	20.9616	16.6819	24.4169
12	3.559	24.9997	24.9979	21.6969	26.5759
13	3.559	24.9997	24.9979	21.6969	26.5759
14	3.559	24.9997	24.9979	21.6969	26.5759
15	3.559	24.9997	24.9979	21.6969	26.5759
16	3.3303	26.7476	26.7495	25.4879	29.4829
17	3.3303	26.7476	26.7495	25.4879	29.4829
18	3.3303	26.7476	26.7495	25.4879	29.4829
19	2.5564	35.0739	35.0914	26.8989	35.9939
20	2.5564	35.0739	35.0914	26.8989	35.9939

21	2.5564	35.0739	35.0914	26.8989	35.9939
22	2.492	36.0116	36.0014	35.6539	36.5889
23	2.492	36.0116	36.0014	35.6539	36.5889
24	2.492	36.0116	36.0014	35.6539	36.5889
25	2.492	36.0116	36.0014	35.6539	36.5889
26	2.3368	38.4929	38.527	36.7759	39.5129
27	2.3368	38.4929	38.527	36.7759	39.5129
28	1.9759	45.8895	45.8914	42.6919	45.9899
29	1.9759	45.8895	45.8914	42.6919	45.9899
30	1.9759	45.8895	45.8914	42.6919	45.9899
31	1.8148	50.233	50.2307	46.1259	54.8699
32	1.8148	50.233	50.2307	46.1259	54.8639
33	1.6689	54.9758	55.2283	52.1949	59.9639
34	1.6689	54.9758	55.2283	52.1949	59.9639
35	1.6689	54.9758	55.2283	52.1949	59.9639
36	1.6689	54.9758	55.2283	52.1949	59.9639
37	1.6689	54.9758	55.2283	52.1949	59.9639
38	1.6689	54.9758	55.2283	52.1949	59.9639
39	1.54	60.0245	60.078	59.2329	61.0689
40	1.54	60.0245	60.078	59.2329	61.0689
41	1.54	60.0245	60.078	59.2329	61.0689
42	1.54	60.0245	60.078	59.2329	61.0689
43	1.4868	62.4064	62.3785	60.2529	65.0469

No	d_Fit(A1)	Ang-parab	Ang-COG	Low Limit	Upp. Limit
1	16.935	6.5539	6.8945	6.1	8.95
2	12.2198	9.0874	9.0859	8.95	9.3
3	11.6075	9.5678	9.4595	9.2	9.7
4	11.3925	9.7489	10.849	9.6	13.45
5	7.5965	14.6426	13.705	12.05	14.75
6	7.1555	15.5504	15.5212	14	16.4
7	7.1555	15.5504	15.5212	14	16.4
8	6.7667	16.45	16.8175	16.3	17.35
9	6.2235	17.8971	17.7841	17.45	18.1
10	6.0223	18.5	18.3657	18.2	18.55
11	5.9042	18.8733	18.8161	18.55	19.1
12	5.8119	19.176	19.2043	18.55	19.45
13	5.7136	19.5092	19.7059	19.2	19.65
14	5.1544	21.65	21.0412	19.6	21.9
15	4.9634	22.4936	22.9847	19.6	24.3

16	4.9634	22.4936	22.9847	19.6	24.3
17	4.9634	22.4936	22.9847	19.6	24.3
18	4.5938	24.33	24.3531	24.25	24.45
19	4.462	25.0604	25.261	24.7	25.6
20	4.462	25.0604	25.261	24.7	25.6
21	4.462	25.0604	25.261	24.7	25.6
22	4.249	26.3388	26.3374	25.85	26.55
23	4.1607	26.9076	26.9136	26.45	27.9
24	4.0084	27.9508	28.6926	27.75	29.8
25	3.6793	30.5086	30.2587	29.75	31
26	3.6793	30.5086	30.2587	29.75	31
27	3.6793	30.5086	30.2587	29.75	31
28	3.6793	30.5086	30.2587	29.75	31
29	3.5715	31.4529	31.4475	30.6	32.4
30	3.5715	31.4529	31.4475	30.6	32.4
31	3.5715	31.4529	31.4475	30.6	32.4
32	3.3398	33.6985	33.6942	31.85	34.65
33	3.3398	33.6985	33.6942	31.85	34.65
34	3.3398	33.6985	33.6942	31.85	34.65
35	3.2462	34.7	35.5866	34.65	36.55
36	2.9743	37.9882	38.1787	37.75	38.65
37	2.9743	37.9882	38.1787	37.75	38.65
38	2.9126	38.825	38.8911	38.6	38.95
39	2.817	40.1987	40.1152	38.85	41.1
40	2.7045	41.9468	0	41.05	41.95
41	2.682	42.3153	42.3685	41.2	43.25
42	2.682	42.3153	42.3685	41.2	43.25
43	2.6245	43.2888	43.2783	42.7	43.95
44	2.564	44.3644	44.3888	43.35	44.9
45	2.564	44.3644	44.3888	43.35	44.9
46	2.5288	45.0158	44.9003	44.6	45.3
47	2.5288	45.0158	44.9003	44.6	45.3
48	2.5288	45.0158	44.9003	44.6	45.3
49	2.494	45.6793	45.6991	45.1	46
50	_			45.1	46
51	2.494	45.6793	45.0991	4J. I	 0
JI	2.494 2.494	45.6793 45.6793	45.6991 45.6991		46
52	2.494	45.6793	45.6991	45.1	46
	2.494 2.4498	45.6793 46.55		45.1 45.75	46 46.6
52	2.494 2.4498 2.4498	45.6793 46.55 46.55	45.6991 46.4442 46.4442	45.1 45.75 45.75	46 46.6 46.6
52 53	2.494 2.4498	45.6793 46.55	45.6991 46.4442	45.1 45.75	46 46.6
52 53 54	2.494 2.4498 2.4498 2.4498	45.6793 46.55 46.55 46.55	45.6991 46.4442 46.4442 46.4442	45.1 45.75 45.75 45.75	46 46.6 46.6 46.6

wuestra CS	I	T		T	1
No	d_Fit(A1)	Ang-parab	Ang-COG	Low Limit	Upp. Limit
1	14.7865	5.9723	6.7337	5.6319	7.9099
2	11.1074	7.9533	9.7606	7.9099	12.0239
3	7.1729	12.3299	12.285	11.9559	12.9589
4	6.8172	12.9759	13.4449	12.5679	14.3529
5	6.0601	14.6052	14.6051	12.9929	15.0329
6	5.8824	15.0489	15.8466	14.6249	16.8179
7	5.2624	16.8341	16.8439	15.8999	16.8689
8	4.9373	17.9515	18.2156	16.8689	18.8239
9	4.4518	19.9282	19.8022	18.8069	20.0309
10	4.1482	21.4033	21.3714	20.0649	22.2409
11	4.1482	21.4033	21.3714	20.0649	22.2409
12	3.9172	22.6815	22.5742	22.4279	22.8019
13	3.8929	22.825	22.9126	22.7169	23.7879
14	3.7343	23.8084	23.7318	23.5499	26.8649
15	3.5448	25.1015	25.6805	23.8219	27.6469
16	3.3728	26.404	27.2113	25.8789	28.5989
17	3.3728	26.404	27.2113	25.8789	28.5989
18	3.023	29.5246	29.2914	28.5989	30.0439
19	2.9701	30.0628	30.2836	29.9589	30.7239
20	2.9701	30.0628	30.2836	29.9589	30.7239
21	2.9082	30.7188	31.3477	29.9589	32.8999
22	2.6787	33.4249	33.3473	32.0499	34.5999
23	2.5616	35.001	34.7873	34.4979	35.0249
24	2.5141	35.684	35.3916	33.6479	36.1979
25	2.5141	35.684	35.3916	33.6479	36.1979
26	2.5141	35.684	35.3916	33.6479	36.1979
27	2.5074	35.7825	35.8078	35.7389	35.8069
28	2.5074	35.7825	35.8078	35.7389	35.8069
29	2.5074	35.7825	35.8078	35.7389	35.8069
30	2.431	36.9471	36.8538	34.9909	40.0229
31	2.2455	40.1244	40.9984	40.1074	41.9099
32	2.2455	40.1244	40.9984	40.1074	41.9099
33	2.1735	41.5138	41.1288	40.6689	41.5359
34	2.1728	41.5274	42.4123	41.4679	43.4739
35	1.9217	47.2611	45.4188	43.5079	47.4009
36	1.9066	47.6596	47.8365	47.2479	48.3529
37	1.8802	48.3707	49.2789	47.2479	50.2569
1	1				1

38	1.7902	50.9713	50.7225	50.2229	51.1749
39	1.7743	51.4628	51.689	51.3109	52.1099
40	1.7475	52.3094	52.2429	52.0759	53.2319
41	1.7038	53.7579	53.3373	52.3309	54.1329
42	1.7038	53.7579	53.3373	52.3309	54.1329
43	1.6607	55.2688	55.564	55.0679	56.0709

No	d_Fit(A1)	Ang-parab	Ang-COG	Low Limit	Upp. Limit
1	15.815	5.5836	5.7628	4.0339	11.2249
2	7.0856	12.4824	12.4373	7.4849	17.5149
3	7.0856	12.4824	12.4373	7.4849	17.5149
4	7.0856	12.4824	12.4373	7.4849	17.5149
5	4.7316	18.7386	18.7431	12.9929	19.5379
6	4.4543	19.9169	20.0237	18.8409	22.5129
7	4.4543	19.9169	20.0237	18.8409	22.5129
8	3.5521	25.0493	24.9977	22.6659	26.6439
9	3.5521	25.0493	24.9977	22.6659	26.6439
10	3.5521	25.0493	24.9977	22.6659	26.6439
11	2.5483	35.1894	35.0987	33.6139	35.4159
12	2.5483	35.1894	35.0987	33.6139	35.4159
13	2.5483	35.1894	35.0987	33.6139	35.4159
14	1.4887	62.3181	62.2104	59.9979	65.0469
15	1.4887	62.3181	62.2104	59.9979	65.0469

No	d_Fit(A1)	Ang-parab	Ang-COG	Low Limit	Upp. Lim
1	17.7096	4.9859	4.9325	4.8499	5.0199
2	14.0101	6.3036	6.3036	5.0029	9.4909
3	14.0101	6.3036	6.3036	5.0029	9.4909
4	9.5069	9.295	9.4118	8.0629	9.9839
5	8.3551	10.5797	10.4362	9.5419	10.8849
6	7.6019	11.6315	11.3443	10.8509	11.8369
7	7.4345	11.8944	11.8464	11.6499	12.0579
8	7.0635	12.5215	12.5225	11.9219	13.1969
9	7.0635	12.5215	12.5225	11.9219	13.1969
10	6.6857	13.2322	13.4984	13.1799	14.5569
11	6.076	14.5668	14.3634	13.8259	14.7439
12	5.9177	14.9586	15.3174	14.5909	15.7469
13	5.6133	15.7749	15.8669	15.4239	16.7669

14	5.2206	16.97	17.1437	16.7669	17.5489
15	4.7832	18.5349	18.1029	16.7669	18.5689
16	4.7032	18.7799	18.7805	16.7669	19.4189
17					
	4.7213	18.7799	18.7805	16.7669	19.418
18	4.5139	19.6513	19.592	19.3849	19.7929
19	4.5139	19.6513	19.592	19.3849	19.7929
20	4.478	19.8105	19.8106	19.3849	19.8609
21	4.298	20.6488	20.2937	19.8269	20.7619
22	4.1479	21.405	21.3711	20.6939	23.2439
23	4.1479	21.405	21.3711	20.6939	23.2439
24	3.8208	23.2618	23.3015	23.1759	23.7029
25	3.8208	23.2618	23.3015	23.1759	23.7029
26	3.6634	24.2765	23.8863	23.3459	24.4509
27	3.6364	24.4591	24.4215	24.2979	24.5019
28	3.5992	24.7157	24.6336	24.4849	24.7739
29	3.5992	24.7157	24.6336	24.4849	24.7739
30	3.5458	25.0945	25.0984	24.7569	25.6239
31	3.5458	25.0945	25.0984	24.7569	25.6239
32	3.5458	25.0945	25.0984	24.7569	25.6239
33	3.3471	26.6102	26.1888	25.3689	27.3239
34	3.3314	26.7382	27.5049	26.6099	28.5819
35	3.1174	28.6115	28.7747	27.7489	29.1429
36	2.9159	30.6355	30.4035	30.1459	30.7069
37	2.8754	31.0783	30.9222	30.6559	31.3869
38	2.8397	31.479	31.4937	31.0979	32.1689
39	2.8397	31.479	31.4937	31.0979	32.1689
40	2.8397	31.479	31.4937	31.0979	32.1689
41	2.6871	33.3171	33.4175	31.6419	34.3959

No	d_Fit(A1)	Ang-parab	Ang-COG	Low Limit	Upp. Limi
1	14.1254	6.2521	6.2409	4.0339	12.2959
2	7.088	12.478	12.4762	6.9239	16.0529
3	7.088	12.478	12.4762	6.9239	16.0529
4	4.7296	18.7468	18.7442	16.8009	19.6399
5	4.7296	18.7468	18.7442	16.8009	19.6399
6	4.1718	21.2808	21.138	18.8579	23.7539
7	3.5499	25.0649	25.0669	21.5609	28.5479
8	3.5499	25.0649	25.0669	21.5609	28.5479
9	3.5499	25.0649	25.0669	21.5609	28.5479
10	2.8418	31.4548	31.4277	25.1819	33.0529

11	2.8418	31.4548	31.4277	25.1819	33.0529
12	2.706	33.0776	33.4564	32.7129	35.5349
13	2.5131	35.6989	35.8813	32.7129	42.3519
14	2.5131	35.6989	35.8813	32.7129	42.3519

No	d_Fit(A1)	Ang-parab	Ang-COG	Low Limit	Upp. Limit			
1	15.1739	5.8197	5.6755	5.0029	6.1589			
2	15.1739	5.8197	5.6755	5.0029	6.1589			
3	14.229	6.2066	6.2046	5.0029	9.9159			
4	14.229	6.2066	6.2046	5.0029	9.9159			
5	14.229	6.2066	6.2046	5.0029	9.9159			
6	14.229	6.2066	6.2046	5.0029	9.9159			
7	7.1231	12.4163	12.4176	10.8849	13.9279			
8	7.1231	12.4163	12.4176	10.8849	13.9279			
9	7.1231	12.4163	12.4176	10.8849	13.9279			
10	4.7488	18.6703	18.623	16.8009	18.7219			
11	4.7488	18.6703	18.623	16.8009	18.7219			
12	4.4419	19.973	20.0905	18.8239	21.4929			
13	4.4419	19.973	20.0905	18.8239	21.4929			
14	4.1366	21.4641	21.8385	21.4471	23.8389			
15	3.5571	25.0131	24.9976	23.8729	26.5759			
16	3.5571	25.0131	24.9976	23.8729	26.5759			
17	3.5571	25.0131	24.9976	23.8729	26.5759			
18	2.536	35.3648	35.4442	34.4639	44.1879			
19	2.536	35.3648	35.4442	34.4639	44.1879			
20	1.4948	62.0359	62.02	54.8979	62.9729			

No	d_Fit(A1)	Ang-parab	Ang-COG	Low Limit	Upp. Limit
1	16.1181	6.8864	6.9776	6.2	9.8
2	14.438	7.6889	7.7073	7.45	9.7
3	14.438	7.6889	7.7073	7.45	9.7
4	14.438	7.6889	7.7073	7.45	9.7
5	14.438	7.6889	7.7073	7.45	9.7
6	10.8898	10.2	10.3994	9.7	11.45
7	9.6554	11.5083	11.6509	11.25	12
8	9.2369	12.0315	12.1194	11.55	12.3
9	8.8664	12.5363	12.5558	12.3	12.75
10	8.6901	12.7915	12.782	12.6	12.9

11	8.4265	13.1936	13.2261	12.9	13.25
12	7.8837	14.1064	13.9842	12.9	14.6
13	7.1809	15.4951	15.46	14.15	17.7
14	7.1809	15.4951	15.46	14.15	17.7
15	7.1809	15.4951	15.46	14.15	17.7
16	6.1065	18.2427	18.1772	18	18.45
17	5.9832	18.622	18.6369	18.45	19
18	5.849	19.0533	19.0567	18.7	19.9
19	5.5886	19.95	20.0063	19.75	20.25
20	5.4912	20.3075	20.3578	19.75	21.4
21	5.1899	21.4998	21.2929	19.75	22
22	4.9621	22.4997	22.5335	19.75	23
23	4.9621	22.4997	22.5335	19.75	23
24	4.656	24	23.6114	23.1	24.05
25	4.656	24	23.6114	23.1	24.05
26	4.4672	25.0305	25.0354	24.05	25.45
27	4.4672	25.0305	25.0354	24.05	25.45
28	4.3697	25.5985	25.579	25.15	26.55
29	4.183	26.7618	26.8196	25.85	27.4
30	4.183	26.7618	26.8196	25.85	27.4
31	4.0909	27.3756	27.913	27.4	29
32	4.0909	27.3756	27.913	27.4	29
33	4.0909	27.3756	27.913	27.4	29
34	3.8404	29.2	29.0754	27.55	30
35	3.8404	29.2	29.0754	27.55	30
36	3.7454	29.9577	30.118	29.45	30.8
37	3.7454	29.9577	30.118	29.45	30.8
38	3.5779	31.395	31.394	30.8	32.7
39	3.5779	31.395	31.394	30.8	32.7
40	3.5779	31.395	31.394	30.8	32.7
41	3.5779	31.395	31.394	30.8	32.7
42	3.3804	33.2815	33.1309	32.35	34.7
43	3.3804	33.2815	33.1309	32.35	34.7
44	3.3804	33.2815	33.1309	32.35	34.7
45	3.171	35.55	35.9631	34.85	38.75
46	2.8319	39.978	39.814	39.1	40.85
47	2.8319	39.978	39.814	39.1	40.85
48	2.8319	39.978	39.814	39.1	40.85
49	2.771	40.8947	40.7563	39.1	41
50	2.7611	41.0483	41.049	40.95	42.15
51	2.7611	41.0483	41.049	40.95	42.15
52	2.7611	41.0483	41.049	40.95	42.15
52	2.7011	71.0400	71.043	TU.90	72.10

53	2.6765	42.407	42.6134	42.25	43.65
54	2.6765	42.407	42.6134	42.25	43.65
55	2.5643	44.3586	44.6118	42.25	45.35
56	2.5643	44.3586	44.6118	42.25	45.35
57	2.5643	44.3586	44.6118	42.25	45.35
58	2.5379	44.8453	44.8418	44.6	45.05
59	2.5379	44.8453	44.8418	44.6	45.05
60	2.5379	44.8453	44.8418	44.6	45.05
61	2.5379	44.8453	44.8418	44.6	45.05
62	2.4962	45.6358	45.5854	45.05	46.8
63	2.4962	45.6358	45.5854	45.05	46.8
64	2.4361	46.8292	46.9817	46.65	47.35

No	d_Fit(A1)	Ang-parab	Ang-COG	Low Limit	Upp. Limit
1	18.5341	4.7639	4.4351	4.0339	4.8159
2	15.6027	5.6597	5.3501	4.8499	5.6659
3	14.0734	6.2752	6.2725	6.0059	6.8559
4	14.0734	6.2752	6.2725	6.0059	6.8559
5	14.0734	6.2752	6.2725	6.0059	6.8559
6	14.0734	6.2752	6.2725	6.0059	6.8559
7	14.0734	6.2752	6.2725	6.0059	6.8559
8	14.0734	6.2752	6.2725	6.0059	6.8559
9	10.9449	8.0716	8.4053	8.0459	8.8959
10	9.8982	8.9268	9.0284	8.8449	9.2189
11	8.5177	10.3772	10.3118	9.8819	10.7319
12	7.622	11.6006	11.4111	10.9189	12.0409
13	7.0741	12.5027	12.5015	10.9189	12.8399
14	7.0741	12.5027	12.5015	10.9189	12.8399
15	7.0741	12.5027	12.5015	10.9189	12.8399
16	7.0741	12.5027	12.5015	10.9189	12.8399
17	7.0741	12.5027	12.5015	10.9189	12.8399
18	6.88	12.8569	12.9153	12.8399	13.0099
19	6.7899	13.0281	13.4752	12.9759	13.9789
20	5.8376	15.1652	15.116	14.9649	15.2709
21	5.7852	15.3034	15.3262	15.1859	15.4409
22	5.7297	15.4525	15.6711	15.3219	15.9679
23	4.7243	18.7679	18.7698	17.7699	19.8609
24	4.7243	18.7679	18.7698	17.7699	19.8609
25	4.7243	18.7679	18.7698	17.7699	19.8609
26	4.7243	18.7679	18.7698	17.7699	19.8609

27	4.7243	18.7679	18.7698	17.7699	19.8609
28	4.463	19.8779	20.2348	19.8439	20.6599
29	4.2437	20.916	20.7987	19.8439	20.9829
30	4.181	21.2334	21.5941	20.9319	22.6319
31	4.181	21.2334	21.5941	20.9319	22.6319
32	3.9223	22.652	23.3734	22.4789	23.1079
33	3.6145	24.61	24.4529	22.6659	24.6719
34	3.5465	25.0892	25.0935	24.6379	25.6409
35	3.5465	25.0892	25.0935	24.6379	25.6409
36	3.5465	25.0892	25.0935	24.6379	25.6409
37	3.5465	25.0892	25.0935	24.6379	25.6409
38	3.5465	25.0892	25.0935	24.6379	25.6409
39	3.5199	25.2816	25.8261	25.2329	26.4569
40	3.5199	25.2816	25.8261	25.2329	26.4569
41	3.5199	25.2816	25.8261	25.2329	26.4569
42	3.5199	25.2816	25.8261	25.2329	26.4569
43	3.3495	26.591	26.9835	26.4909	27.5449
44	3.3495	26.591	26.9835	26.4909	27.5449
45	3.2197	27.6838	27.8433	27.1879	28.2419
46	3.1317	28.4778	28.3827	27.1879	28.5649
47	3.1206	28.5819	28.6164	28.5479	28.7179
48	3.1046	28.7323	29.0822	28.6329	29.4999
49	2.8493	31.3699	30.4693	28.7519	31.3869
50	2.8493	31.3699	30.4693	28.7519	31.3869
51	2.8493	31.3699	30.4693	28.7519	31.3869
52	2.8399	31.4759	31.4952	28.7519	31.8969
53	2.8399	31.4759	31.4952	28.7519	31.8969
54	2.8399	31.4759	31.4952	28.7519	31.8969
55	2.8399	31.4759	31.4952	28.7519	31.8969
56	2.8399	31.4759	31.4952	28.7519	31.8969
57	2.8269	31.6249	31.7322	31.6079	32.8829

No	d_Fit(A1)	Ang-parab	Ang-COG	Low Limit	Upp. Limit
1	18.0214	4.8996	4.6533	4.2719	4.9349
2	17.8338	4.9511	4.9656	4.2719	4.9859
3	14.0279	6.2956	6.17	4.9689	7.0769
4	14.0279	6.2956	6.17	4.9689	7.0769
5	11.242	7.8579	8.269	7.8079	9.6949
6	9.1039	9.7074	9.6398	9.5589	9.7459
7	9.0461	9.7696	10.2742	9.7289	10.8679

8	7.06	12.5277	12.5271	11.0719	12.9079
9	7.06	12.5277	12.5271	11.0719	12.9079
10	7.06	12.5277	12.5271	11.0719	12.9079
11	7.06	12.5277	12.5271	11.0719	12.9079
12	6.2837	14.0828	13.9677	13.1799	14.8119
13	5.4211	16.3379	16.0364	15.0499	16.8009
14	4.8138	18.4159	17.8494	15.0499	18.4499
15	4.7193	18.7882	18.7867	15.0499	19.4019
16	4.5423	19.5274	20.6063	18.9599	22.1219
17	4.5423	19.5274	20.6063	18.9599	22.1219
18	4.0122	22.1378	22.332	22.0029	22.5979
19	4.0122	22.1378	22.332	22.0029	22.5979
20	3.9097	22.726	22.7184	22.5639	22.9039
21	3.9097	22.726	22.7184	22.5639	22.9039
22	3.6468	24.3888	23.7106	22.8019	24.4339
23	3.6468	24.3888	23.7106	22.8019	24.4339
24	3.6081	24.6538	24.5595	22.8019	24.7059
25	3.6081	24.6538	24.5595	22.8019	24.7059
26	3.5989	24.7182	24.7152	24.6719	24.7569
27	3.5989	24.7182	24.7152	24.6719	24.7569
28	3.5434	25.1113	25.1097	24.7399	26.3209
29	3.5434	25.1113	25.1097	24.7399	26.3209
30	3.5434	25.1113	25.1097	24.7399	26.3209
31	3.1892	27.9538	28.0814	27.6299	28.5819
32	3.0601	29.1586	28.9767	28.5309	29.5169
33	3.0232	29.5227	29.5027	28.5309	29.5849
34	3.0155	29.6005	29.7291	29.5509	29.7549
35	2.8487	31.3769	30.6622	29.6189	31.4209
36	2.8373	31.506	31.5205	29.8569	32.8659
37	2.6957	33.2075	32.9044	31.6419	33.4779
38	2.5094	35.7535	35.8451	33.6479	38.3229
39	2.3447	38.3594	38.514	38.0849	38.7139
40	2.3447	38.3594	38.514	38.0849	38.7139
41	2.1725	41.5348	41.7501	41.1959	42.3179
42	2.1312	42.3779	42.3966	41.6209	42.4879
43	2.1312	42.3779	42.3966	41.6209	42.4879
44	2.0474	44.2013	43.412	42.4029	44.2559
45	2.0439	44.28	44.2982	44.2219	44.3409
46	2.0277	44.6533	44.8705	44.2219	46.0409
47	1.9876	45.6043	45.8772	45.3779	46.4659
		46.4849	46.8639	46.2959	47.3839
48	1.952	TO.TOT3	40.0039	40.2333	T1.3033

50	1.8749	48.5149	49.0218	46.2959	50.5969
51	1.8749	48.5149	49.0218	46.2959	50.5969
52	1.8749	48.5149	49.0218	46.2959	50.5969
53	1.8019	50.6171	51.3895	50.5289	53.0279
54	1.8019	50.6171	51.3895	50.5289	53.0279
55	1.7072	53.6418	53.2049	50.5289	54.0649
56	1.7072	53.6418	53.2049	50.5289	54.0649
57	1.6936	54.108	54.5059	54.0649	54.9659
58	1.6936	54.108	54.5059	54.0649	54.9659

N.1	1 =:(/ A /)		4 000		11 11 11
No	d_Fit(A1)	Ang-parab	Ang-COG	Low Limit	Upp. Limit
1	18.4883	4.7757	4.526	4.0339	4.8329
2	15.2171	5.8032	5.7553	4.7989	8.8789
3	9.9293	8.8988	9.1018	8.2839	10.9699
4	7.1566	12.358	12.3045	11.7859	13.9789
5	6.3199	14.0019	14.3818	13.8939	14.8629
6	5.6475	15.6788	15.5589	15.3389	15.8149
7	5.5966	15.8221	15.8288	15.7469	15.8829
8	5.5642	15.9149	16.3314	15.8489	16.0019
9	4.9826	17.7869	17.3557	15.9339	17.8889
10	4.9513	17.9003	17.912	16.7669	18.0249
11	4.7668	18.5993	18.4662	17.9229	19.0449
12	4.4467	19.9512	19.9503	18.9259	21.7989
13	4.0473	21.9435	21.9365	21.7649	22.1049
14	3.5557	25.0236	24.7284	23.8559	25.4199
15	3.4982	25.4412	25.5041	25.3179	25.6409
16	3.4631	25.7036	26.088	25.6069	26.6269
17	3.3316	26.7365	26.9542	26.6099	27.5109
18	3.2374	27.5298	27.4834	26.8139	27.6469
19	3.2201	27.6806	28.6122	27.5449	29.6359
20	2.9857	29.9021	29.7806	29.5679	30.6219
21	2.9775	29.9862	30.6902	29.9249	31.7269
22	2.8152	31.7593	31.977	31.5739	32.4239
23	2.754	32.4843	33.0502	32.4239	32.5429
24	2.5858	34.6627	34.5132	32.5259	34.7019
25	2.5499	35.1661	35.0281	33.6479	35.3479
26	2.5499	35.1661	35.0281	33.6479	35.3479
27	2.5355	35.373	35.3749	33.6479	35.7559
28	2.5355	35.373	35.3749	33.6479	35.7559

29	2.5286	35.4725	35.8503	35.4329	36.4869
30	2.5286	35.4725	35.8503	35.4329	36.4869
31	2.4594	36.5047	37.1879	36.1809	38.2209
32	2.3514	38.2456	38.5038	36.5209	39.1899
33	2.1711	41.5616	42.3746	41.3999	44.7489
34	2.0231	44.7612	44.2062	43.4739	44.9019
35	1.9932	45.4698	45.5632	44.8679	46.3979
36	1.9493	46.5528	46.5168	46.1429	46.7379
37	1.9415	46.7515	47.2283	46.5679	47.8089
38	1.9006	47.8178	48.367	47.7239	49.0839
39	1.7449	52.3936	52.335	52.0079	52.7049
40	1.7199	53.2149	52.9817	52.0079	53.2319
41	1.7189	53.2489	53.2665	53.2319	53.3339
42	1.6887	54.2793	54.3902	53.2659	55.2549
43	1.6589	55.3369	55.4981	55.2379	56.1899

No	d_Fit(A1)	Ang-parab	Ang-COG	Low Limit	Upp. Limit
1	9.4578	11.7494	11.7563	10.4	13
2	7.5661	14.7017	14.193	13.35	15.55
3	7.1277	15.6115	15.5878	13.35	16.55
4	6.6197	16.8179	16.6017	15.75	17.1
5	6.4895	17.1578	17.1938	16.9	17.55
6	6.0608	18.3816	18.2057	16.9	19.1
7	5.8197	19.15	19.3655	18.45	19.8
8	5.602	19.9017	19.8756	19.6	20.15
9	5.4932	20.3	20.4811	19.95	21
10	5.0625	22.0479	21.7111	20.85	23.4
11	4.6883	23.8324	23.7696	20.85	24.35
12	4.4928	24.8858	24.8185	23.95	25
13	4.3895	25.4813	25.4092	25	25.7
14	4.2565	26.2915	26.3042	25.8	27.1
15	4.2565	26.2915	26.3042	25.8	27.1
16	3.6874	30.4406	30.4448	29.95	31.25
17	3.5556	31.5979	31.5877	31.35	32.7
18	3.3442	33.652	33.645	33.2	34
19	3.3442	33.652	33.645	33.2	34
20	3.2736	34.4	34.7312	34.35	36.85
21	3.0583	36.907	37.2746	36.6	39.7
22	2.698	42.0534	42.0326	39.55	45.15

23	2.5169	45.2407	45.3144	43.95	45.8
24	2.5169	45.2407	45.3144	43.95	45.8
25	2.4974	45.6134	45.7261	45.5	46
26	2.4572	46.4034	46.3964	45.5	47.3
27	2.4572	46.4034	46.3964	45.5	47.3
28	2.3473	48.7117	48.7146	47.95	49.8
29	2.2821	50.1999	50.1794	49.7	50.95
30	2.2821	50.1999	50.1794	49.7	50.95
31	2.2821	50.1999	50.1794	49.7	50.95
32	2.2376	51.2684	51.2719	50.5	51.6
33	2.2376	51.2684	51.2719	50.5	51.6
34	2.2376	51.2684	51.2719	50.5	51.6
35	2.2115	51.919	51.9257	51.75	52.1
36	2.2115	51.919	51.9257	51.75	52.1
37	2.1398	53.7955	52.9669	52	53.85
38	2.1398	53.7955	52.9669	52	53.85
39	2.1284	54.1083	54.1025	52	56.6
40	2.1284	54.1083	54.1025	52	56.6
41	2.1284	54.1083	54.1025	52	56.6
42	2.0808	55.45	55.7394	54.9	56.7
43	2.0285	57.0092	56.9443	54.9	57.3
44	2.0052	57.7325	57.7365	57.1	58.05
45	1.9799	58.5428	58.5424	58.15	59.05
46	1.9799	58.5428	58.5424	58.15	59.05
47	1.9799	58.5428	58.5424	58.15	59.05
48	1.9088	60.9493	60.9565	60.8	61.8
49	1.8837	61.848	61.856	61	62.35
50	1.8388	63.5341	63.3215	62.3	63.8
51	1.8388	63.5341	63.3215	62.3	63.8
52	1.8187	64.3179	64.3147	63.75	64.9
53	1.8187	64.3179	64.3147	63.75	64.9
54	1.8035	64.9259	65.0523	64.7	65.35
55	1.8035	64.9259	65.0523	64.7	65.35
56	1.8035	64.9259	65.0523	64.7	65.35
57	1.7307	68.022	67.8632	66.3	68.15
58	1.7263	68.215	68.2322	67.5	68.4

No d Fit(A1) Ang-parab Ang-COG Low Limit Upp. Limit

2 14.1602 6.2367 6.4846 6.1079 6.9239 3 12.7322 6.937 6.9508 6.9069 6.9749 4 12.6325 6.9919 6.9926 6.9749 7.9609 5 12.4147 7.1147 8.2155 7.0089 9.6099 6 8.29 10.6631 10.3479 9.8649 10.8509 7 8.109 10.9019 11.2989 10.8509 12.6189 9 7.1038 12.4503 12.1949 10.8509 12.6189 9 7.1038 12.6503 12.1949 10.8509 12.6189 10 6.968 12.6939 13.6755 12.5169 15.0499 11 5.8717 15.0765 15.2032 14.7609 15.6789 12 5.6183 15.7608 16.042 14.7609 16.4949 13 5.363 16.5163 16.5558 15.7809 17.7189 14 4.9943 17.745 17.7514 15	1	14.8681	5.9395	5.9683	5.8359	6.1249
4 12.6325 6.9919 6.9926 6.9749 7.9609 5 12.4147 7.1147 8.2155 7.0089 9.6099 6 8.29 10.6631 10.3479 9.8649 10.8509 7 8.109 10.9019 11.2989 10.8509 10.9869 8 7.1038 12.4503 12.1949 10.8509 12.6189 9 7.1038 12.4503 12.1949 10.8509 12.6189 10 6.968 12.6939 13.6755 12.5169 15.0499 11 5.8717 15.0765 15.2032 14.7609 16.4949 13 5.363 15.7608 16.042 14.7609 16.4949 13 5.363 16.5163 16.5558 15.7809 17.7189 14 4.9943 17.745 17.7514 15.7809 19.6399 15 4.9943 17.745 17.7514 15.7809 19.6399 16 4.5049 19.6909 19.2827	2	14.1602	6.2367	6.4846	6.1079	6.9239
5 12.4147 7.1147 8.2155 7.0089 9.6099 6 8.29 10.6631 10.3479 9.8649 10.8509 7 8.109 10.9019 11.2989 10.8509 10.9669 8 7.1038 12.4503 12.1949 10.8509 12.6189 9 7.1038 12.4503 12.1949 10.8509 12.6189 10 6.968 12.6939 13.6755 12.5169 15.0499 11 5.8717 15.0765 15.2032 14.7609 15.6789 12 5.6183 15.7608 16.042 14.7609 16.4949 13 5.363 16.5163 16.5558 15.7809 17.7189 14 4.9943 17.745 17.7514 15.7809 19.6399 15 4.9943 17.745 17.7514 15.7809 19.6399 16 4.5049 19.6909 19.2827 18.8409 19.7079 17 4.2728 20.7719 20.2796	3	12.7322	6.937	6.9508	6.9069	6.9749
6 8.29 10.6631 10.3479 9.8649 10.8509 7 8.109 10.9019 11.2989 10.8509 10.9869 8 7.1038 12.4503 12.1949 10.8509 12.6189 9 7.1038 12.4503 12.1949 10.8509 12.6189 10 6.968 12.6939 13.6755 12.5169 15.0499 11 5.8717 15.0765 15.2032 14.7609 15.6789 12 5.6183 15.7608 16.042 14.7609 16.4949 13 5.363 16.5163 16.5558 15.7809 17.7189 14 4.9943 17.745 17.7514 15.7809 19.6399 15 4.9943 17.745 17.7514 15.7809 19.6399 16 4.5049 19.6909 19.2827 18.8409 19.7079 17 4.2728 20.7719 20.2796 19.7079 20.7789 18 4.1718 21.2806 21.4411 <td>4</td> <td>12.6325</td> <td>6.9919</td> <td>6.9926</td> <td>6.9749</td> <td>7.9609</td>	4	12.6325	6.9919	6.9926	6.9749	7.9609
7 8.109 10.9019 11.2989 10.8509 10.9869 8 7.1038 12.4503 12.1949 10.8509 12.6189 9 7.1038 12.4503 12.1949 10.8509 12.6189 10 6.968 12.6939 13.6755 12.5169 15.0499 11 5.8717 15.0765 15.2032 14.7609 15.6789 12 5.6183 15.7608 16.042 14.7609 15.6789 13 5.363 16.5163 16.5558 15.7809 17.7189 14 4.9943 17.745 17.7514 15.7809 19.6399 15 4.9943 17.745 17.7514 15.7809 19.6399 16 4.5049 19.6909 19.2827 18.8409 19.7079 17 4.2728 20.7719 20.2796 19.7079 20.7789 18 4.1718 21.2806 21.4411 20.7789 23.6179 20 3.3428 26.6453 26.3789	5	12.4147	7.1147	8.2155	7.0089	9.6099
8 7.1038 12.4503 12.1949 10.8509 12.6189 9 7.1038 12.4503 12.1949 10.8509 12.6189 10 6.968 12.6939 13.6755 12.5169 15.0499 11 5.8717 15.0765 15.2032 14.7609 15.6789 12 5.6183 15.7608 16.042 14.7609 16.4949 13 5.363 16.5163 16.5558 15.7809 17.7189 14 4.9943 17.745 17.7514 15.7809 19.6399 15 4.9943 17.745 17.7514 15.7809 19.6399 16 4.5049 19.6909 19.2827 18.8409 19.7079 17 4.2728 20.7719 20.2796 19.7079 20.7789 18 4.1718 21.2806 21.4411 20.7789 23.6179 20 3.3428 26.6453 26.3789 25.0799 27.7149 21 3.1804 28.033 28.858	6	8.29	10.6631	10.3479	9.8649	10.8509
9 7.1038 12.4503 12.1949 10.8509 12.6189 10 6.968 12.6939 13.6755 12.5169 15.0499 11 5.8717 15.0765 15.2032 14.7609 15.6789 12 5.6183 15.7608 16.042 14.7609 16.4949 13 5.363 16.5163 16.5558 15.7809 17.7180 14 4.9943 17.745 17.7514 15.7809 19.6399 15 4.9943 17.745 17.7514 15.7809 19.6399 16 4.5049 19.6909 19.2827 18.8409 19.7079 17 4.2728 20.7719 20.2796 19.7079 20.7789 18 4.1718 21.2806 21.4411 20.7789 23.6179 20 3.3428 26.6453 26.3789 25.0799 27.7149 21 3.1804 28.033 28.8586 27.5279 30.099 22 2.9493 30.2801 30.786	7	8.109	10.9019	11.2989	10.8509	10.9869
10 6.968 12.6939 13.6755 12.5169 15.0499 11 5.8717 15.0765 15.2032 14.7609 15.6789 12 5.6183 15.7608 16.042 14.7609 16.4949 13 5.363 16.5163 16.5558 15.7809 17.7189 14 4.9943 17.745 17.7514 15.7809 19.6399 15 4.9943 17.745 17.7514 15.7809 19.6399 16 4.5049 19.6909 19.2827 18.8409 19.7079 17 4.2728 20.7719 20.2796 19.7079 20.7789 18 4.1718 21.2806 21.4411 20.7789 23.6179 20 3.3428 26.6453 26.3789 25.0799 27.7149 21 3.1804 28.033 28.8586 27.5279 30.0099 22 2.9493 30.2801 30.7866 30.0439 31.5569 23 2.9493 30.2801 30.7	8	7.1038	12.4503	12.1949	10.8509	12.6189
11 5.8717 15.0765 15.2032 14.7609 15.6789 12 5.6183 15.7608 16.042 14.7609 16.4949 13 5.363 16.5163 16.5558 15.7809 17.7189 14 4.9943 17.745 17.7514 15.7809 19.6399 15 4.9943 17.745 17.7514 15.7809 19.6399 16 4.5049 19.6909 19.2827 18.8409 19.7079 17 4.2728 20.7719 20.2796 19.7079 20.7789 18 4.1718 21.2806 21.4411 20.7789 23.6179 19 4.1718 21.2806 21.4411 20.7789 23.6179 20 3.3428 26.6453 26.3789 25.0799 27.7149 21 3.1804 28.033 28.8586 27.5279 30.0099 22 2.9493 30.2801 30.7866 30.0439 31.5569 23 2.9493 30.2801 30.	9	7.1038	12.4503	12.1949	10.8509	12.6189
12 5.6183 15.7608 16.042 14.7609 16.4949 13 5.363 16.5163 16.5558 15.7809 17.7189 14 4.9943 17.745 17.7514 15.7809 19.6399 15 4.9943 17.745 17.7514 15.7809 19.6399 16 4.5049 19.6909 19.2827 18.8409 19.7079 17 4.2728 20.7719 20.2796 19.7079 20.7789 18 4.1718 21.2806 21.4411 20.7789 23.6179 19 4.1718 21.2806 21.4411 20.7789 23.6179 20 3.3428 26.6453 26.3789 25.0799 27.7149 21 3.1804 28.033 28.8586 27.5279 30.0099 22 2.9493 30.2801 30.7866 30.0439 31.5569 23 2.9493 30.2801 30.7866 30.0439 31.5569 24 2.8224 31.6762 31.	10	6.968	12.6939	13.6755	12.5169	15.0499
13 5.363 16.5163 16.5558 15.7809 17.7189 14 4.9943 17.745 17.7514 15.7809 19.6399 15 4.9943 17.745 17.7514 15.7809 19.6399 16 4.5049 19.6909 19.2827 18.8409 19.7079 17 4.2728 20.7719 20.2796 19.7079 20.7789 18 4.1718 21.2806 21.4411 20.7789 23.6179 19 4.1718 21.2806 21.4411 20.7789 23.6179 20 3.3428 26.6453 26.3789 25.0799 27.7149 21 3.1804 28.033 28.8586 27.5279 30.0099 22 2.9493 30.2801 30.7866 30.0439 31.5569 23 2.9493 30.2801 30.7866 30.0439 31.5569 24 2.8224 31.6762 31.9153 30.2989 32.2709 25 2.6991 33.1642 33	11	5.8717	15.0765	15.2032	14.7609	15.6789
14 4.9943 17.745 17.7514 15.7809 19.6399 15 4.9943 17.745 17.7514 15.7809 19.6399 16 4.5049 19.6909 19.2827 18.8409 19.7079 17 4.2728 20.7719 20.2796 19.7079 20.7789 18 4.1718 21.2806 21.4411 20.7789 23.6179 19 4.1718 21.2806 21.4411 20.7789 23.6179 20 3.3428 26.6453 26.3789 25.0799 27.7149 21 3.1804 28.033 28.8586 27.5279 30.0099 22 2.9493 30.2801 30.7866 30.0439 31.5569 23 2.9493 30.2801 30.7866 30.0439 31.5569 24 2.8224 31.6762 31.9153 30.2989 32.2709 25 2.6991 33.1642 33.0401 32.5259 33.4609 27 2.6991 33.1642 3	12	5.6183	15.7608	16.042	14.7609	16.4949
15 4.9943 17.745 17.7514 15.7809 19.6399 16 4.5049 19.6909 19.2827 18.8409 19.7079 17 4.2728 20.7719 20.2796 19.7079 20.7789 18 4.1718 21.2806 21.4411 20.7789 23.6179 19 4.1718 21.2806 21.4411 20.7789 23.6179 20 3.3428 26.6453 26.3789 25.0799 27.7149 21 3.1804 28.033 28.8586 27.5279 30.0099 22 2.9493 30.2801 30.7866 30.0439 31.5569 23 2.9493 30.2801 30.7866 30.0439 31.5569 24 2.8224 31.6762 31.9153 30.2989 32.2709 25 2.6991 33.1642 33.0401 32.5259 33.4609 26 2.6991 33.1642 33.0401 32.5259 33.4609 28 2.6991 33.1642	13	5.363	16.5163	16.5558	15.7809	17.7189
16 4.5049 19.6909 19.2827 18.8409 19.7079 17 4.2728 20.7719 20.2796 19.7079 20.7789 18 4.1718 21.2806 21.4411 20.7789 23.6179 19 4.1718 21.2806 21.4411 20.7789 23.6179 20 3.3428 26.6453 26.3789 25.0799 27.7149 21 3.1804 28.033 28.8586 27.5279 30.0099 22 2.9493 30.2801 30.7866 30.0439 31.5569 23 2.9493 30.2801 30.7866 30.0439 31.5569 24 2.8224 31.6762 31.9153 30.2989 32.2709 25 2.6991 33.1642 33.0401 32.5259 33.4609 26 2.6991 33.1642 33.0401 32.5259 33.4609 28 2.6991 33.1642 33.0401 32.5259 33.4609 29 2.6745 33.4779 <td< td=""><td>14</td><td>4.9943</td><td>17.745</td><td>17.7514</td><td>15.7809</td><td>19.6399</td></td<>	14	4.9943	17.745	17.7514	15.7809	19.6399
17 4.2728 20.7719 20.2796 19.7079 20.7789 18 4.1718 21.2806 21.4411 20.7789 23.6179 19 4.1718 21.2806 21.4411 20.7789 23.6179 20 3.3428 26.6453 26.3789 25.0799 27.7149 21 3.1804 28.033 28.8586 27.5279 30.0099 22 2.9493 30.2801 30.7866 30.0439 31.5569 23 2.9493 30.2801 30.7866 30.0439 31.5569 24 2.8224 31.6762 31.9153 30.2989 32.2709 25 2.6991 33.1642 33.0401 32.5259 33.4609 26 2.6991 33.1642 33.0401 32.5259 33.4609 27 2.6991 33.1642 33.0401 32.5259 33.4609 28 2.6991 33.1642 33.0401 32.5259 33.4609 29 2.6745 33.4779 <td< td=""><td>15</td><td>4.9943</td><td>17.745</td><td>17.7514</td><td>15.7809</td><td>19.6399</td></td<>	15	4.9943	17.745	17.7514	15.7809	19.6399
18 4.1718 21.2806 21.4411 20.7789 23.6179 19 4.1718 21.2806 21.4411 20.7789 23.6179 20 3.3428 26.6453 26.3789 25.0799 27.7149 21 3.1804 28.033 28.8586 27.5279 30.0099 22 2.9493 30.2801 30.7866 30.0439 31.5569 23 2.9493 30.2801 30.7866 30.0439 31.5569 24 2.8224 31.6762 31.9153 30.2989 32.2709 25 2.6991 33.1642 33.0401 32.5259 33.4609 26 2.6991 33.1642 33.0401 32.5259 33.4609 27 2.6991 33.1642 33.0401 32.5259 33.4609 28 2.6991 33.1642 33.0401 32.5259 33.4609 29 2.6745 33.4779 33.9416 33.4099 34.5149 30 2.6745 33.4779 <td< td=""><td>16</td><td>4.5049</td><td>19.6909</td><td>19.2827</td><td>18.8409</td><td>19.7079</td></td<>	16	4.5049	19.6909	19.2827	18.8409	19.7079
19 4.1718 21.2806 21.4411 20.7789 23.6179 20 3.3428 26.6453 26.3789 25.0799 27.7149 21 3.1804 28.033 28.8586 27.5279 30.0099 22 2.9493 30.2801 30.7866 30.0439 31.5569 23 2.9493 30.2801 30.7866 30.0439 31.5569 24 2.8224 31.6762 31.9153 30.2989 32.2709 25 2.6991 33.1642 33.0401 32.5259 33.4609 26 2.6991 33.1642 33.0401 32.5259 33.4609 28 2.6991 33.1642 33.0401 32.5259 33.4609 28 2.6991 33.1642 33.0401 32.5259 33.4609 29 2.6745 33.4779 33.9416 33.4099 34.5149 30 2.6745 33.4779 33.9416 33.4099 34.5149 31 2.5732 34.8374 <td< td=""><td>17</td><td>4.2728</td><td>20.7719</td><td>20.2796</td><td>19.7079</td><td>20.7789</td></td<>	17	4.2728	20.7719	20.2796	19.7079	20.7789
20 3.3428 26.6453 26.3789 25.0799 27.7149 21 3.1804 28.033 28.8586 27.5279 30.0099 22 2.9493 30.2801 30.7866 30.0439 31.5569 23 2.9493 30.2801 30.7866 30.0439 31.5569 24 2.8224 31.6762 31.9153 30.2989 32.2709 25 2.6991 33.1642 33.0401 32.5259 33.4609 26 2.6991 33.1642 33.0401 32.5259 33.4609 27 2.6991 33.1642 33.0401 32.5259 33.4609 28 2.6991 33.1642 33.0401 32.5259 33.4609 29 2.6745 33.4779 33.9416 33.4099 34.5149 30 2.6745 33.4779 33.9416 33.4099 34.5149 31 2.5732 34.8374 34.9247 34.4979 35.3479 32 2.5732 34.8374 <td< td=""><td>18</td><td>4.1718</td><td>21.2806</td><td>21.4411</td><td>20.7789</td><td>23.6179</td></td<>	18	4.1718	21.2806	21.4411	20.7789	23.6179
21 3.1804 28.033 28.8586 27.5279 30.0099 22 2.9493 30.2801 30.7866 30.0439 31.5569 23 2.9493 30.2801 30.7866 30.0439 31.5569 24 2.8224 31.6762 31.9153 30.2989 32.2709 25 2.6991 33.1642 33.0401 32.5259 33.4609 26 2.6991 33.1642 33.0401 32.5259 33.4609 27 2.6991 33.1642 33.0401 32.5259 33.4609 28 2.6991 33.1642 33.0401 32.5259 33.4609 29 2.6745 33.4779 33.9416 33.4099 34.5149 30 2.6745 33.4779 33.9416 33.4099 34.5149 31 2.5732 34.8374 34.9247 34.4979 35.3479 32 2.5732 34.8374 34.9247 34.4979 35.3479 34 2.5119 35.7165 35.6486 34.4979 36.4359 36 2.4444 36.7373	19	4.1718	21.2806	21.4411	20.7789	23.6179
22 2.9493 30.2801 30.7866 30.0439 31.5569 23 2.9493 30.2801 30.7866 30.0439 31.5569 24 2.8224 31.6762 31.9153 30.2989 32.2709 25 2.6991 33.1642 33.0401 32.5259 33.4609 26 2.6991 33.1642 33.0401 32.5259 33.4609 27 2.6991 33.1642 33.0401 32.5259 33.4609 28 2.6991 33.1642 33.0401 32.5259 33.4609 29 2.6745 33.4779 33.9416 33.4099 34.5149 30 2.6745 33.4779 33.9416 33.4099 34.5149 31 2.5732 34.8374 34.9247 34.4979 35.3479 32 2.5732 34.8374 34.9247 34.4979 35.3479 34 2.5119 35.7165 35.6486 34.4979 36.4359 35 2.5119 35.7165 <t< td=""><td>20</td><td>3.3428</td><td>26.6453</td><td>26.3789</td><td>25.0799</td><td>27.7149</td></t<>	20	3.3428	26.6453	26.3789	25.0799	27.7149
23 2.9493 30.2801 30.7866 30.0439 31.5569 24 2.8224 31.6762 31.9153 30.2989 32.2709 25 2.6991 33.1642 33.0401 32.5259 33.4609 26 2.6991 33.1642 33.0401 32.5259 33.4609 27 2.6991 33.1642 33.0401 32.5259 33.4609 28 2.6991 33.1642 33.0401 32.5259 33.4609 29 2.6745 33.4779 33.9416 33.4099 34.5149 30 2.6745 33.4779 33.9416 33.4099 34.5149 31 2.5732 34.8374 34.9247 34.4979 35.3479 32 2.5732 34.8374 34.9247 34.4979 35.3479 34 2.5119 35.7165 35.6486 34.4979 36.4359 35 2.5119 35.7165 35.6486 34.4979 36.4359 36 2.4444 36.7373 <t< td=""><td>21</td><td>3.1804</td><td>28.033</td><td>28.8586</td><td>27.5279</td><td>30.0099</td></t<>	21	3.1804	28.033	28.8586	27.5279	30.0099
24 2.8224 31.6762 31.9153 30.2989 32.2709 25 2.6991 33.1642 33.0401 32.5259 33.4609 26 2.6991 33.1642 33.0401 32.5259 33.4609 27 2.6991 33.1642 33.0401 32.5259 33.4609 28 2.6991 33.1642 33.0401 32.5259 33.4609 29 2.6745 33.4779 33.9416 33.4099 34.5149 30 2.6745 33.4779 33.9416 33.4099 34.5149 31 2.5732 34.8374 34.9247 34.4979 35.3479 32 2.5732 34.8374 34.9247 34.4979 35.3479 33 2.5732 34.8374 34.9247 34.4979 35.3479 34 2.5119 35.7165 35.6486 34.4979 36.4359 35 2.5119 35.7165 35.6486 34.4979 36.4359 36 2.4444 36.7373 <t< td=""><td>22</td><td>2.9493</td><td>30.2801</td><td>30.7866</td><td>30.0439</td><td>31.5569</td></t<>	22	2.9493	30.2801	30.7866	30.0439	31.5569
25 2.6991 33.1642 33.0401 32.5259 33.4609 26 2.6991 33.1642 33.0401 32.5259 33.4609 27 2.6991 33.1642 33.0401 32.5259 33.4609 28 2.6991 33.1642 33.0401 32.5259 33.4609 29 2.6745 33.4779 33.9416 33.4099 34.5149 30 2.6745 33.4779 33.9416 33.4099 34.5149 31 2.5732 34.8374 34.9247 34.4979 35.3479 32 2.5732 34.8374 34.9247 34.4979 35.3479 33 2.5732 34.8374 34.9247 34.4979 35.3479 34 2.5119 35.7165 35.6486 34.4979 36.4359 35 2.5119 35.7165 35.6486 34.4979 36.4359 36 2.4444 36.7373 36.9425 35.8919 38.7819 37 2.4444 36.7373 <t< td=""><td>23</td><td>2.9493</td><td>30.2801</td><td>30.7866</td><td>30.0439</td><td>31.5569</td></t<>	23	2.9493	30.2801	30.7866	30.0439	31.5569
26 2.6991 33.1642 33.0401 32.5259 33.4609 27 2.6991 33.1642 33.0401 32.5259 33.4609 28 2.6991 33.1642 33.0401 32.5259 33.4609 29 2.6745 33.4779 33.9416 33.4099 34.5149 30 2.6745 33.4779 33.9416 33.4099 34.5149 31 2.5732 34.8374 34.9247 34.4979 35.3479 32 2.5732 34.8374 34.9247 34.4979 35.3479 33 2.5732 34.8374 34.9247 34.4979 35.3479 34 2.5119 35.7165 35.6486 34.4979 36.4359 35 2.5119 35.7165 35.6486 34.4979 36.4359 36 2.4444 36.7373 36.9425 35.8919 38.7819 37 2.4444 36.7373 36.9425 35.8919 38.4759 39 2.2438 40.1565 <t< td=""><td>24</td><td>2.8224</td><td>31.6762</td><td>31.9153</td><td>30.2989</td><td>32.2709</td></t<>	24	2.8224	31.6762	31.9153	30.2989	32.2709
27 2.6991 33.1642 33.0401 32.5259 33.4609 28 2.6991 33.1642 33.0401 32.5259 33.4609 29 2.6745 33.4779 33.9416 33.4099 34.5149 30 2.6745 33.4779 33.9416 33.4099 34.5149 31 2.5732 34.8374 34.9247 34.4979 35.3479 32 2.5732 34.8374 34.9247 34.4979 35.3479 33 2.5732 34.8374 34.9247 34.4979 35.3479 34 2.5119 35.7165 35.6486 34.4979 36.4359 35 2.5119 35.7165 35.6486 34.4979 36.4359 36 2.4444 36.7373 36.9425 35.8919 38.7819 37 2.4444 36.7373 36.9425 35.8919 38.7819 38 2.2888 39.3336 39.0192 38.4759 39.4789 39 2.2438 40.1565 39.9794 39.4449 40.4989 40 2.2438 40.1565	25	2.6991	33.1642	33.0401	32.5259	33.4609
28 2.6991 33.1642 33.0401 32.5259 33.4609 29 2.6745 33.4779 33.9416 33.4099 34.5149 30 2.6745 33.4779 33.9416 33.4099 34.5149 31 2.5732 34.8374 34.9247 34.4979 35.3479 32 2.5732 34.8374 34.9247 34.4979 35.3479 33 2.5732 34.8374 34.9247 34.4979 35.3479 34 2.5119 35.7165 35.6486 34.4979 36.4359 35 2.5119 35.7165 35.6486 34.4979 36.4359 36 2.4444 36.7373 36.9425 35.8919 38.7819 37 2.4444 36.7373 36.9425 35.8919 38.7819 38 2.2888 39.3336 39.0192 38.4759 39.4789 39 2.2438 40.1565 39.9794 39.4449 40.4989 40 2.2438 40.1565 39.9794 39.4449 40.4989	26	2.6991	33.1642	33.0401	32.5259	33.4609
29 2.6745 33.4779 33.9416 33.4099 34.5149 30 2.6745 33.4779 33.9416 33.4099 34.5149 31 2.5732 34.8374 34.9247 34.4979 35.3479 32 2.5732 34.8374 34.9247 34.4979 35.3479 34 2.5119 35.7165 35.6486 34.4979 36.4359 35 2.5119 35.7165 35.6486 34.4979 36.4359 36 2.4444 36.7373 36.9425 35.8919 38.7819 37 2.4444 36.7373 36.9425 35.8919 38.7819 38 2.2888 39.3336 39.0192 38.4759 39.4789 39 2.2438 40.1565 39.9794 39.4449 40.4989 40 2.2438 40.1565 39.9794 39.4449 40.4989	27	2.6991	33.1642	33.0401	32.5259	33.4609
30 2.6745 33.4779 33.9416 33.4099 34.5149 31 2.5732 34.8374 34.9247 34.4979 35.3479 32 2.5732 34.8374 34.9247 34.4979 35.3479 33 2.5732 34.8374 34.9247 34.4979 35.3479 34 2.5119 35.7165 35.6486 34.4979 36.4359 35 2.5119 35.7165 35.6486 34.4979 36.4359 36 2.4444 36.7373 36.9425 35.8919 38.7819 37 2.4444 36.7373 36.9425 35.8919 38.7819 38 2.2888 39.3336 39.0192 38.4759 39.4789 39 2.2438 40.1565 39.9794 39.4449 40.4989 40 2.2438 40.1565 39.9794 39.4449 40.4989	28	2.6991	33.1642	33.0401	32.5259	33.4609
31 2.5732 34.8374 34.9247 34.4979 35.3479 32 2.5732 34.8374 34.9247 34.4979 35.3479 33 2.5732 34.8374 34.9247 34.4979 35.3479 34 2.5119 35.7165 35.6486 34.4979 36.4359 35 2.5119 35.7165 35.6486 34.4979 36.4359 36 2.4444 36.7373 36.9425 35.8919 38.7819 37 2.4444 36.7373 36.9425 35.8919 38.7819 38 2.2888 39.3336 39.0192 38.4759 39.4789 39 2.2438 40.1565 39.9794 39.4449 40.4989 40 2.2438 40.1565 39.9794 39.4449 40.4989	29	2.6745	33.4779	33.9416	33.4099	34.5149
32 2.5732 34.8374 34.9247 34.4979 35.3479 33 2.5732 34.8374 34.9247 34.4979 35.3479 34 2.5119 35.7165 35.6486 34.4979 36.4359 35 2.5119 35.7165 35.6486 34.4979 36.4359 36 2.4444 36.7373 36.9425 35.8919 38.7819 37 2.4444 36.7373 36.9425 35.8919 38.7819 38 2.2888 39.3336 39.0192 38.4759 39.4789 39 2.2438 40.1565 39.9794 39.4449 40.4989 40 2.2438 40.1565 39.9794 39.4449 40.4989	30	2.6745	33.4779	33.9416	33.4099	34.5149
33 2.5732 34.8374 34.9247 34.4979 35.3479 34 2.5119 35.7165 35.6486 34.4979 36.4359 35 2.5119 35.7165 35.6486 34.4979 36.4359 36 2.4444 36.7373 36.9425 35.8919 38.7819 37 2.4444 36.7373 36.9425 35.8919 38.7819 38 2.2888 39.3336 39.0192 38.4759 39.4789 39 2.2438 40.1565 39.9794 39.4449 40.4989 40 2.2438 40.1565 39.9794 39.4449 40.4989	31	2.5732	34.8374	34.9247	34.4979	35.3479
34 2.5119 35.7165 35.6486 34.4979 36.4359 35 2.5119 35.7165 35.6486 34.4979 36.4359 36 2.4444 36.7373 36.9425 35.8919 38.7819 37 2.4444 36.7373 36.9425 35.8919 38.7819 38 2.2888 39.3336 39.0192 38.4759 39.4789 39 2.2438 40.1565 39.9794 39.4449 40.4989 40 2.2438 40.1565 39.9794 39.4449 40.4989	32	2.5732	34.8374	34.9247	34.4979	35.3479
35 2.5119 35.7165 35.6486 34.4979 36.4359 36 2.4444 36.7373 36.9425 35.8919 38.7819 37 2.4444 36.7373 36.9425 35.8919 38.7819 38 2.2888 39.3336 39.0192 38.4759 39.4789 39 2.2438 40.1565 39.9794 39.4449 40.4989 40 2.2438 40.1565 39.9794 39.4449 40.4989	33	2.5732	34.8374	34.9247	34.4979	35.3479
36 2.4444 36.7373 36.9425 35.8919 38.7819 37 2.4444 36.7373 36.9425 35.8919 38.7819 38 2.2888 39.3336 39.0192 38.4759 39.4789 39 2.2438 40.1565 39.9794 39.4449 40.4989 40 2.2438 40.1565 39.9794 39.4449 40.4989	34	2.5119	35.7165	35.6486	34.4979	36.4359
37 2.4444 36.7373 36.9425 35.8919 38.7819 38 2.2888 39.3336 39.0192 38.4759 39.4789 39 2.2438 40.1565 39.9794 39.4449 40.4989 40 2.2438 40.1565 39.9794 39.4449 40.4989	35	2.5119	35.7165	35.6486	34.4979	36.4359
38 2.2888 39.3336 39.0192 38.4759 39.4789 39 2.2438 40.1565 39.9794 39.4449 40.4989 40 2.2438 40.1565 39.9794 39.4449 40.4989	36	2.4444	36.7373	36.9425	35.8919	38.7819
39 2.2438 40.1565 39.9794 39.4449 40.4989 40 2.2438 40.1565 39.9794 39.4449 40.4989	37	2.4444	36.7373	36.9425	35.8919	38.7819
40 2.2438 40.1565 39.9794 39.4449 40.4989	38	2.2888	39.3336	39.0192	38.4759	39.4789
	39	2.2438	40.1565	39.9794	39.4449	40.4989
41 2.2438 40.1565 39.9794 39.4449 40.4989	40	2.2438	40.1565	39.9794	39.4449	40.4989
	41	2.2438	40.1565	39.9794	39.4449	40.4989

42	2.2438	40.1565	39.9794	39.4449	40.4989
43	2.2247	40.5164	41.8186	39.4449	44.3239
44	2.0411	44.3443	44.2702	43.9669	44.5789
45	2.03	44.5996	44.6026	44.5619	44.7149
46	1.9982	45.3499	45.3327	44.6299	46.0239
47	1.9982	45.3499	45.3327	44.6299	46.0239
48	1.9676	46.0951	46.1738	46.0579	46.2959
49	1.9199	47.3088	47.276	46.3299	48.2169
50	1.9199	47.3088	47.276	46.3299	48.2169
51	1.9199	47.3088	47.276	46.3299	48.2169
52	1.8852	48.2339	48.3236	48.2169	48.4889
53	1.8482	49.2628	48.8764	48.2169	49.3219
54	1.8456	49.3363	49.3306	49.2879	49.3729
55	1.8379	49.5568	49.856	49.3559	51.0049
56	1.7885	51.023	50.7427	50.3079	51.1579
57	1.7885	51.023	50.7427	50.3079	51.1579
58	1.7791	51.312	51.6065	51.0389	52.7049

No	d_Fit(A1)	Ang-parab	Ang-COG	Low Limit	Upp. Limit
1	14.4023	7.708	7.3689	6.9	8.75
2	12.5589	8.8415	9.2096	8.75	10.9
3	9.953	11.163	11.6858	10.2	12.6
4	8.0541	13.8064	13.3144	12.55	13.95
5	7.491	14.85	14.5771	13.25	14.9
6	7.1163	15.6366	15.6481	13.25	18
7	7.1163	15.6366	15.6481	13.25	18
8	7.1163	15.6366	15.6481	13.25	18
9	5.8745	18.9697	19.0586	17.55	20.65
10	5.3874	20.7032	20.5242	19.05	21.65
11	4.8571	22.9924	22.911	21.75	23.7
12	4.4364	25.2072	25.2723	24.05	25.55
13	4.4364	25.2072	25.2723	24.05	25.55
14	4.3367	25.7965	25.793	25.4	26.35
15	4.3367	25.7965	25.793	25.4	26.35
16	4.3367	25.7965	25.793	25.4	26.35
17	4.3367	25.7965	25.793	25.4	26.35
18	4.2294	26.4625	26.4616	26.15	26.65
19	4.2294	26.4625	26.4616	26.15	26.65
20	4.2294	26.4625	26.4616	26.15	26.65

21	4.2294	26.4625	26.4616	26.15	26.65
22	4.1575	26.9288	26.9731	26.55	27.25
23	4.1575	26.9288	26.9731	26.55	27.25
24	4.1575	26.9288	26.9731	26.55	27.25
25	4.102	27.3	27.3461	27.25	28.6
26	3.9133	28.6441	28.6463	28.2	28.9
27	3.8702	28.9704	29.2021	28.7	29.75
28	3.8702	28.9704	29.2021	28.7	29.75
29	3.8702	28.9704	29.2021	28.7	29.75
30	3.8076	29.4573	29.3017	29	29.6
31	3.556	31.5935	31.5909	29.6	33.55
32	3.556	31.5935	31.5909	29.6	33.55
33	3.556	31.5935	31.5909	29.6	33.55
34	3.3318	33.7817	33.7803	33.55	34.25
35	3.3318	33.7817	33.7803	33.55	34.25
36	3.3318	33.7817	33.7803	33.55	34.25
37	3.3318	33.7817	33.7803	33.55	34.25
38	3.2336	34.8395	35.244	34.25	36.35
39	3.0969	36.4302	36.4301	34.25	36.55
40	3.0969	36.4302	36.4301	34.25	36.55
41	3.0327	37.2295	36.9828	36.65	37.35
42	2.989	37.7948	37.6575	37.35	38.7
43	2.989	37.7948	37.6575	37.35	38.7