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Introduction

The Mining and Metallurgical Industry has become one 
of the bases of the economic-industrial development in Cuba. 
For this reason, it currently faces the challenge of Management 
Improvement to achieve a competitive industrial level worldwide. 
This Management improvement, as an integrated process, cannot 
ignore the technological improve-ment starting from a consistent 
application of advances in science and technology. In the nickel 
plants, in which the carbonate-ammonia leaching technology 
is used, also universally known as the “Caron” process, the 
multi-hearth furnaces [1] are used for mineral reduction. They 
represent an important link in the productive chain. The current 
work was carried out in one of these plants, specifically in the 
post-combustion sub-process of a reduction furnace, in which 
several automatic control strategies were previously used without 
success, attributed to the non-linear behavior of the temperature 
as a function of the steady-state post-combustion airflow [2]. A 
mathematical model that describes the dynamics of the process  

 
must be available to design an automatic control strategy that  
guarantees the existing demands [3]. Nowadays, there is a growing 
interest in neural networks due to its great versatility and to the 
continuous advance in network training algorithms as well as in 
hardware [4]. Taking into account the facts previously described, 
the objective of this research is to model the post combustion in 
the multi hearth furnace of a Nickel plant, by using artificial neural 
networks, for the future implementation of a control architecture to 
increase the energy efficiency of the process.

Materials and Methods
The Process of Reduction 

The Herreshoff type furnaces [5] (Figure 1), are composed of 

(i)	 A metal cylinder covered on the inside with refractory 
bricks, protected on the outside by a metal framework,

(ii)	 Installation for stirring, feeding and discharging of ore, 
and 
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(iii)	 Combustion chambers. Inside the metal cylinder, there are 
17 spherical vaults shaped hearths or screeds. In the center, 
there is a rotating shaft to which 68 arms are attached, 4 for 
each hearth (Figure 1).

Figure 1: Hysteresis type characteristic deformation of 
piezo actuator.

After the ore is weighed, it is discharged to the auger feeder, 
which transports the ore to the hearth in the upper part of the 
furnace, in which the ore is retained during approximately 45 
minutes. The reduction process is eminently endothermic. For 
this reason, the furnace has 10 combustion chambers located in 
hearths 15, 12, 10, 8 and 6 with high-pressure oil burners, which 
produce hot gases for heating the ore, while enriching the reducing 
atmosphere of the furnace, since they work with incomplete 
combustion. Thus, the ore in its descent is subjected to a rising 
temperature that allows a gradual heating, while the concentration 
of reducing gases i.e. carbon monoxide (CO) and hydrogen gas (H2) 
increases. The concentration of these gases in contact with the ores 
at the beginning of decomposition is extremely important. After 
reducing the nickel oxide, the mineral mixture is discharged from 
the furnace to a rotating conveyor [6]. In hearths 4 and 6 of the 
furnace, secondary air is introduced by means of a fan (Figure 1), 
with the purpose of burning the CO and H2 not consumed in the 
previous reduction stages, according to the following equations:

2 2
1 6.76
2

MkcalCO O CO
kmal

+ → +                                    (1)

2 2 2
1 57.8
2

MkcalH O H O
kmal

+ → +                              (2)

As can be seen from equation (1) and (2), these oxidation 
reactions are exothermic and provide part of the heat needed in 
the upper hearths (4 to 0). The combustion in hearths 4 and 6 also 
avoids that the concentration of CO and H2 in the gases that leave 
the furnace exceed the permissible emission limits, which would 

lead to environmental pollution. Furthermore, it increases the 
overall energy efficiency of the process.

Obtaining an Approximate Model of the Process through 
Experimental Identification

Obtaining a mathematical model that describes the process 
from the phenomenological point of view would be extremely 
complicated, since the physicochemical processes involved would 
lead to differential equations systems in partial derivatives, 
nonlinear and variable in time. Therefore, experimental 
identification was chosen [7,8].

Notions of Modeling using Neural Networks: It has been 
shown that neural networks can be effectively and accurately used 
for the identification and control of systems with complex dynamics, 
especially for non-linear plants varying over time, and that are 
more difficult to regulate with conventional methods [9]. In real life, 
most industrial processes belong to this category, hence the need 
for intelligent methods to control those systems. Neural networks 
provide more accurate models than conventional methods, in the 
identification of some systems, especially for non-linear systems 
with variable parameters [4]. The multilayer perceptron network 
(or MLP), see Figure 2, is probably the most widely used type of 
network. The main reason for this selection is its ability to model, 
in a simple way, complex function-al relationships. This has been 
proved through numerous practical applications (Figure 2). The 
class of MLP network considered here has a single hidden layer 
with a hyperbolic tangent activation function (f) and in the output 
layer a linear activation function (F):

0 0 0
1 0 1

( , ) ( ( ) ) ( ( ) )
q q m

i ij j i i ij j jl l j it
j j i

w W F w h w W F w f w z w Wy
∧
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= = + = + +∑ ∑ ∑  (3)

Figure 2: Multilayer perceptron network.

The weights (specified by the vector θ or alternatively by the 
matrices w  and W are the adjustable parameters of the network 
and are determined starting from the set of examples during the 
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training process. The examples, or training data, constitute the 
set of systems ( )u t , and their corresponding outputs ( )y t . The 
training set is given by:

{[ ( ), ( )] | 1,..., }NZ u t y t t N= =                                 (4)

The identification can be seen as the determination of the 
mapping of the training data set, to the set of possible weights: 

NZ θ
∧

→ so that, the network can produce a prediction ( )y t
∧

 as close 
as possible to the actual output ( )y t . A method of predicting error, 
which is the strategy applied here, is based on the introduction of a 
measure of proximity in terms of the least square’s criterion.
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The weights are calculated as:

arg min ( , )N
NV Zθ θ

∧

=                                                                          (6)

Through some kind of iterative minimization scheme:

( 1) ( ) ( ) ( )i i i ifθ θ µ+ = + +                        (7)

Where ( )iθ  specifies the current iteration (number ‘i’),  is the 

search direction, and ( )iµ  the step.

As in any process of identification of a dynamic system, the 

four classic steps were followed: obtaining the input-output data, 
selecting the structure of the model, estimating the model and 
validating it. Regarding the selection of the structure of the model, 
it is not only necessary to select a set of regressors, but also the 
architecture of the network. The procedure used is described in 
[10]. The idea is to select the regressors based on the identification 
of linear systems and then determine the best possible network 
architecture with the regressors given as input. The Levenberg-
Marquardt was used as a training algorithm. The MATLAB® program 
and the identification toolbox with neural networks developed by 
M Nørgaard [10] were used as a software to carry out the research.

Analysis of the Experiments Carried Out

Several experiments using binary pseudo random sequences 
(APRBS) of order 5 to the input variables were applied, and multiple 
replicas were made in order to achieve an adequate longitude of the 
input signal. The sampling period was calculated in three seconds 
taking into account the dynamics of the process. Details on the 
conditions under which the trials were conducted can be found in 
[11]. The model based on artificial neural networks for the post-
combustion sub-process of the ore reduction furnace is shown in 
Figure 3. The vertical sig-nals are also considered as inputs of the 
three models, but they vary in time (Figure 3).

Figure 3: Structure of the general model of the three experiments.

Experiment 1: Variation of Air Flow in H4: During the 
experiment, 1 240 data were taken corresponding to the variables 
TH4, TH6 and ApH4. In this case, the opening of the hearth four 
experienced a variation of 12 to 57 % of its total distance, the 
opening of the valve of the six-hearth remained constant at 40 % 
and the flow of ore fed to the furnace was 18.2 t/h . In Figure 4, 
the measurements of the input and output variables can be seen 
(Figure 4).

In this case, the non-linear autoregressive model (NNARX) was 
selected:

( / ) ( / 1, ) ( ( ), )y t y t t g tθ θ ϕ θ
∧ ∧

= − =                                               (8)

( ) [ ( 1)... ( ) ( )... ( 1)]T
a k b kt y t y t n u t n u t n nϕ = − − − − − +       (9)

Specifically, a totally connected network architecture composed 
of five neurons, hyperbolic tangent in the hidden layer and a linear 
neuron as output, was taken. The results of the validation are 
shown in Figure 5, where prediction errors for TH4 are 0.5 % . For 
TH6 the validation tests showed the data ex-posed in Figure 6, with 
prediction errors of 0.09 % (Figures 5 & 6).
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Figure 4: Variation of ApH4 (experiment 1).

Figure 5: Network output vs. Actual output and error prediction for TH4.
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Figure 6: Network output vs. Actual output and error prediction for TH6.

Experiment 2: Variation of Air Flow in H6: During the 
experiment, 1 240 data were taken corresponding to the variables 
TH4, TH6 and ApH6. In this case, the opening of home six 
experienced a variation of 20 to 68 % of its total distance, while the 
opening of the valve of the hearth four was kept constant at 25 % , 
with a flow of ore fed to the furnace of 18.2 t/h . Figure 7 shows the 

measurements of the input and output variables. After following 
the same procedure described for the first experiment, prediction 
errors of 0.3 % are made for the hearth temperature six (Figure 
8). Figure 9 shows the validation test for hearth temperature four, 
where prediction errors of 0.5 % are made (Figures 7-9).

Figure 7: Variation of ApH6 (experiment 2).
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Figure 8: Network output vs. Actual output and error prediction for TH6.

Figure 9: Network output vs. Actual output and error prediction for TH4.

Experiment 3: Variation of Mineral Flow: During the 
experiment, 1 103 data were taken corresponding to the variables 
TH4, TH6 and Fm. Figure 10 shows the results of the input and 
output variables obtained after experimenting with ore flows of 16 
to 19 t/h , while the valve openings of hearths four and six were 
kept constant in 20 and 30 % , respectively (Figure 10). Figures 
11 & 12 show the results during the validation for the observed 

outputs, where lower pre-diction errors are observed for the home 
temperature six with respect to the home temperature four (Figures 
11 & 12). The results of the comparison showed that the model 
obtained through the use of ANN, reflects with more accuracy the 
dynamic characteristics of the post-combustion sub-process than 
the linear models obtained in [7], thus, testing the potentialities 
that offers this tool of artificial intelligence.
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Figure 10: Variation of Fm with time (experiment 3).

Figure 11: Network output vs. Actual output and error prediction for TH4.
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Figure 12: Network output vs. Actual output and error prediction for TH6.

Conclusion

Despite the significant effort made on the research about gas-
solid reactions that occur during material processing operations, 
the knowledge of such reactors is still essentially incomplete; 
particularly in the context of the reduction of laterites, to which 
the present study is linked. The artificial neural networks models 
of temperatures in hearths four and six before changes in their 
air flow, were obtained. These models were validated, providing 
superior adjustments to those achieved with the linear models.
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