

MINISTERIO DE EDUCACIÓN SUPERIOR INSTITUTO SUPERIOR MINERO METALÚRGICO "Dr. Antonio Núñez Jiménez"

FACULTAD DE METALURGIA Y ELECTROMECÁNICA DEPARTAMENTO DE INGENIERÍA MECÁNICA

En opción al título de Ingeniero Mecánico

Determinación de los parámetros fundamentales del proceso de secado natural de las menas lateríticas

Autora: Yureydis Jardines Fuentes.

Tutores: Ms. C. Yoalbys Retirado Mediaceja. Ms. C. Marbelis Lamorú Urgelles. Dr. C. Arístides A. Legrá Lobaina.

> MOA, 2012 "Año 54 de la revolución"

DECLARACIÓN DE AUTORIDAD

Yo: **Yureydis Jardines Fuentes**, autora de este Trabajo de Diploma y los tutores Yoalbys Retirado Mediaceja, Marbelis Lamorú Urgelles y Arístides A. Legrá Lobaina declaramos la propiedad intelectual del mismo al servicio del Departamento de Ingeniería Mecánica y el Centro de Estudio de Energía y Tecnología Avanzada de Moa pertenecientes al Instituto Superior Minero Metalúrgico, para que dispongan de su uso cuando estimen conveniente.

> Yureydis Jardines Fuentes Diplomante

Ms. C. Yoalbys Retirado Mediaceja Tutor Ms. C. Marbelis Lamorú Urgelles Tutora

Dr. C. Arístides A. Legrá Lobaina Tutor

PENSAMIENTO

"Como mísmo la naturale3a le reveló sus secretos a los hombres del pasado; así mísmo lo hará con los hombres del presente.

Solamente tienen que hacerse las preguntas correctas".

Albert Einstein

AGRADECIMIENTOS

Agradezco profundamente a mi madre porque siempre me educó en los valores más importantes que debe poseer todo ser humano y por su constante preocupación para que pudiera concretar este éxito personal.

A mi padre y mi hermano porque aunque no son muy explícitos en las cosas que piensan, de igual manera se que me han apoyado incondicionalmente a lo largo de todos estos años.

A mis tutores Marbelis Lamorú Urgelles y Arístides A. Legrá Lobaina por la voluntad de ayudar que mostraron en todo momento a pesar de las obligaciones que actualmente tienen como dirigentes administrativos.

Agradezco en especial a Yoalbys Retirado Mediaceja por haberme acogido a pesar de las incontables responsabilidades que tenía, por haber llegado en el momento que más orientación necesitaba y por su comprensión y dedicación.

A mis compañeros de estudio (Osmel, Monchy, Israel y Alexander) y a mis amigos (especialmente a Ever y Alexis Abad) por los oportunos y sabios consejos que sinceramente me dieron cuando los necesité y además por todas las ayudas ofrecidas.

A Rolber porque en su momento fue el compañero incondicional del cual recibí toda la ayuda que necesité, además le agradezco eternamente por ser el mejor de los padres para con mi niña, lo cual me permitió transitar con tranquilidad esta etapa de mi vida.

A todos los profesores que de una forma u otra contribuyeron con mi formación profesional y con la materialización de este sueño.

A los nombrados y a quienes involuntariamente no he mencionado,

A todos muchas gracias,

La autora.

DEDICATORIA

A mi queridísima y adorada niña (Betsabel) porque es lo más importante y lindo que tengo en la vida, por ser la fuente de inspiración de todo lo que hago. Además le dedico esta obra como una muestra del amor infinito que le profeso y como un pequeño ejemplo para que estudie mucho, se supere constantemente y lo que es más importante, que sea una persona honesta y de bién.

A mi madre por todo lo que representa en mi vida y por ser junto a mi niña el complemento que me alegra mis días.

A la Revolución Cubana por hacer posible la realización de este éxito.

A los que me aceptan tal como soy, a los que confiaron en mi capacidad y a los que siempre estuvieron prestos a ayudarme.

A todos les dedico esta obra, La autora.

RESUMEN

En el presente trabajo se determinaron, mediante el empleo de una aplicación informática, los parámetros fundamentales del proceso de secado natural de las menas lateríticas en las condiciones de explotación de la empresa "Comandante Ernesto Che Guevara". Se comprobó que los flujos de calor máximos transferidos por radiación y convección fueron iguales a 675,3 y 77,91 W/m². Se determinó la oscilación de la radiación solar que incide sobre la superficie de secado de las pilas de minerales, evidenciándose que su comportamiento es asimétrico respecto al medio día solar. Se verificó que durante el proceso se producen cambios en la temperatura y la humedad del material hasta las capas que se encuentran a 10 y 50 cm de la superficie y que la velocidad de secado ascendió a 0,054 %/h para un tiempo de secado de 12 horas. Luego se calculó el área de exposición y el volumen de las pilas con sección transversal triangular, comprobándose que estos parámetros se incrementaron en 750,4 m² y 1 610,47 m³, para una oscilación de los ángulos maximal y tangencial entre 10 y 60 grados. Finalmente se expusieron los beneficios económicos y ambientales asociados a la implementación del referido proceso, los cuales son en general positivos para la empresa considerada en esta investigación.

ABSTRACT

Presently work was determined, by means of the employment of a computer application, the fundamental parameters of the process of natural drying of the ores lateritic under the conditions of exploitation of the company "Ernesto Che Guevara". Was proven that the maximum flows of heat transferred by radiation and convection went similar to 675,30 and 77,91 W/m². The oscillation of the solar radiation was determined that impacts on the surface of drying of the piles of minerals, being evidenced that its behavior is asymmetric. It was verified that during the process changes take place in the temperature and the humidity of the material until the layers that are to 10 and 50 cm of the surface and that the drying speed ascended to 0,054 %/h for a time of drying of 12 hours. Then it was calculated the exhibition area and the volume of the piles with triangular traverse section, being proven that these parameters were increased in 750,40 m² and 1 610,47 m³, for an oscillation of the angles maximal and tangential between 10 and 60 grades. Finally the economic and environmental benefits associated to the implementation were exposed of the one referred process, which are in general positive for the company considered in this investigation.

ÍNDICE

	INTRODUCCIÓN.	-1-
CAPÍTULO 1.	FUNDAMENTOS TEÓRICOS RELACIONADOS CON LOS PROCESOS Y	
	LAS TEORÍAS DE SECADO.	-5-
1.1-	Introducción.	-5-
1.2-	Generalidades sobre los procesos de secado.	-5-
	1.2.1- Mecanismos de movimiento de la humedad.	-6-
	1.2.2- Antecedentes y estado actual de las teorías de secado.	-6-
1.3-	Investigaciones precedentes sobre los procesos de secado.	-10-
	1.3.1- Modelos matemáticos del secado solar.	-10-
	1.3.2- Secado natural de materiales.	-11-
	1.3.3- Secado natural de las menas lateríticas.	-11-
1.4-	Teoría básica de los procesos de secado.	-13-
	1.4.1- Contenido de humedad del material.	-13-
	1.4.2- Ratio de humedad.	-14-
	1.4.3- Requerimiento térmico del proceso de secado.	-15-
	1.4.4- Régimen de secado.	-15-
	1.4.5- Ratio de secado.	-16-
	1.4.6- Propiedades del aire que influyen en el secado natural.	-17-
1.5-	Conclusiones del capítulo 1.	-18-
CAPÍTULO 2.	PROCEDIMIENTO PARA LA DETERMINACIÓN DE LOS PARÁMETROS	
	FUNDAMENTALES DEL PROCESO DE SECADO NATURAL DE LAS	
	MENAS LATERÍTICAS.	-19-
2.1-	Introducción.	-19-
2.2-	Flujos de calor que inciden en el proceso de secado natural.	-19-
	2.2.1- Calor por radiación que llega a la superficie.	-19-
	2.2.1.1- Radiación solar que incide sobre la superficie.	-20-
	2.2.2- Calor por convección que llega o sale de la superficie.	-24-

Pág.

	2.2.3- Calor por conducción que abandona la superficie.	-25-
	2.2.3.1- Distribución de temperatura en la pila de mineral.	-27-
2.3-	Distribución de humedad en la pila de mineral.	-28-
2.4-	Velocidad de secado y humedad en la superficie de la pila.	-29-
2.5-	Área de exposición y volumen de las pilas.	-31-
2.6-	Conclusiones del capítulo 2.	-32-
CAPÍTULO 3.	COMPORTAMIENTO DE LOS PARÁMETROS FUNDAMENTALES DEL	
	PROCESO DE SECADO NATURAL DE LAS MENAS LATERÍTICAS.	-33-
3.1-	Introducción.	-33-
3.2-	Implementación del procedimiento en una aplicación informática.	-33-
3.3-	Mediciones de las variables que influyen en el secado natural.	-35-
	3.3.1- Humedad inicial y final de las menas lateríticas.	-35-
	3.3.2- Variables meteorológicas.	-35-
	3.3.3- Técnica experimental para la medición de la humedad.	-35-
3.4-	Aplicación del procedimiento de cálculo a una pila industrial.	-36-
	3.4.1- Cálculo de la radiación global que llega a la superficie.	-36-
	3.4.2- Cálculo del calor total que llega a la superficie.	-37-
	3.4.3- Cálculo de la distribución de temperatura.	-38-
	3.4.4- Cálculo de la distribución de humedad.	-40-
	3.4.5- Cálculo de la velocidad de secado.	-42-
	3.4.6- Cálculo del área de exposición y el volumen de la pila.	-44-
3.5-	Beneficios económicos derivados de la implementación del	
	secado natural de las menas lateríticas.	-45-
	3.5.1- Beneficios obtenidos en la empresa Ernesto Che Guevara.	-45-
3.6-	Impacto ambiental asociado al secado natural del mineral.	-46-
	3.6.1- Afectaciones provocadas por el polvo.	-47-
	3.6.2- Afectaciones provocadas por el ruido.	-47-
3.7-	Conclusiones del capítulo 3.	-48-
	CONCLUSIONES GENERALES.	-49-
	RECOMENDACIONES.	-5 0 -
	REFERENCIAS BIBLIOGRÁFICAS.	-51-
	ANEXOS.	-IX-

Introducción General

INTRODUCCIÓN

La producción de Níquel basada en la tecnología de lixiviación carbonato amoniacal se desarrolla en las empresas "Comandante Ernesto Che Guevara" y "Comandante René Ramos Latour", ubicadas en los municipios Moa y Mayarí, respectivamente. El proceso productivo comienza con la extracción a cielo abierto de la materia prima mineral, la cual se somete a diversos procesos metalúrgicos comenzando por el secado térmico convencional en cilindros rotatorios.

Hoy día, en las plantas de Preparación de Mineral de estas industrias metalúrgicas existe como **situación problémica** *el elevado contenido de humedad que tiene la materia prima mineral que se suministra a los secaderos convencionales.* Lo anterior provoca que en las mencionadas plantas persistan como **problemas no resueltos:** *la adherencia y recirculación del 3 al 5 % del material trasegado en los sistemas de transporte automotor y por bandas*, que aumenta sus respectivos consumos de combustible y energía eléctrica; *el transporte de 34 a 42 t de agua por cada 100 t de menas lateríticas transportadas*, que impone la necesidad de aumentar la productividad de los referidos sistemas de transporte para cumplir los planes de producción acordados *y el consumo de 27 a 34 kg de petróleo por cada tonelada de material alimentado al proceso de secado convencional*, lo cual reduce la eficiencia térmica de los secaderos (Diagnóstico técnico de las empresas Ernesto Che Guevara y René Ramos Latour, 2010).

Entre las causas fundamentales que originan la referida situación problémica se destacan: las características hidrogeológicas de los yacimientos niquelíferos cubanos (Blanco y Llorente, 2004; De Miguel, 2004, 2007, 2009; Carmenate, 2009) y la ineficiente tecnología actualmente empleada en la implementación del proceso de secado natural de las menas lateríticas, antes de que estas ingresen a los secaderos térmicos convencionales.

Actualmente es escasa la literatura internacional que aborda el secado natural de los minerales lateríticos. En Cuba, los aspectos teórico-experimentales y tecnológicos del proceso han sido estudiados por múltiples investigadores (Estenoz *et al.*, 2005, 2006, 2007b; Retirado *et al.*, 2007, 2009, 2010; Estenoz, 2009; Espinosa y Pérez, 2010a y b;

Vinardell, 2011), sin embargo, ninguno de los autores aquí referenciados ha determinado los parámetros fundamentales del proceso, los cuales según Retirado (2012) son: la radiación solar global y los flujos de calor que inciden en la superficie de secado, la distribución de temperatura y humedad del material, la velocidad de secado; el área de exposición y el volumen de las pilas de mineral.

A pesar de lo anteriormente señalado se debe destacar que los estudios más recientes se han orientado a la determinación aislada de alguno de estos parámetros, tal es el caso de la investigación desarrollada por Retirado et al. (2011) quienes evaluaron los procesos de transferencia de calor fundamentales que tienen lugar durante el secado natural con el propósito de determinar el modo predominante de transferencia de calor. Para ello midieron las variables climatológicas y termodinámicas que influyen en la transferencia de calor por convección y radiación durante el secado y calcularon los criterios adimensionales para determinar el tipo de convección predominante.

Por su parte, Retirado y Legrá (2011) establecen los modelos matemáticos que permiten calcular, de forma precisa, la longitud de la superficie lateral, la altura, el área de exposición y el volumen de las pilas de menas lateríticas, en función de las dimensiones de la superficie horizontal disponible para el secado y de dos propiedades del material: la granulometría y la humedad. Las ecuaciones matemáticas establecidas caracterizan a las pilas que tienen simetría axial y secciones transversales semi-elípticas, hiperbólicas, parabólicas y triangulares.

El estudio más completo de los realizados hasta la actualidad en la temática del secado natural de los minerales lateríticos es el desarrollado por Retirado (2012). En el mismo se efectuó la simulación y optimización del proceso de secado natural de las menas lateríticas cubanas. Para ello estableció los modelos matemáticos de los flujos de calor que inciden en el secado natural; la variación de temperatura y humedad que experimenta el mineral; la velocidad de secado; el área de exposición y el volumen de las pilas de minerales con diferentes formas geométricas de su sección transversal. Sin embargo, debido al enfoque eminentemente matemático de su trabajo el autor dedicó sus análisis a la simulación y optimización computacional del proceso sin particularizar los aspectos relacionados con los parámetros fundamentales del mismo.

Como se observa, existe diversidad en cuanto a las publicaciones relacionadas con el secado de los minerales lateríticos. En las investigaciones precedentes consultadas se estudian diferentes aspectos del proceso, del análisis y la sistematización de estas se infiere que hasta el momento son escasas las investigaciones que se dedican a la determinación de los parámetros fundamentales del proceso de secado natural de las menas lateríticas cubanas en las condiciones de explotación de la empresa "Comandante Ernesto Che Guevara", es por ello que se declara como **problema de la investigación:**

La necesidad de determinar los parámetros fundamentales del proceso de secado natural de las menas lateríticas, en las condiciones de explotación de la empresa "Comandante Ernesto Che Guevara".

Como objeto de estudio de la investigación se plantea:

El proceso de secado natural de las menas lateríticas en la empresa "Comandante Ernesto Che Guevara".

Y su campo de acción es:

Los parámetros fundamentales del proceso objeto de estudio.

En correspondencia con el problema declarado se define como **objetivo general**: Determinar los parámetros fundamentales del proceso de secado natural de las menas lateríticas, en las condiciones de explotación de la empresa "Comandante Ernesto Che Guevara".

A partir del objetivo general declarado se establece la siguiente hipótesis:

La sistematización de los fundamentos básicos de los procesos de secado y su particularización a las condiciones específicas del objeto de estudio, permitirá la determinación de los parámetros fundamentales del proceso de secado natural de las menas lateríticas, en las condiciones de explotación de la empresa "Comandante Ernesto Che Guevara".

Para cumplir el objetivo general se declaran los siguientes objetivos específicos:

- A. Determinar las limitaciones de las investigaciones precedentes relacionadas con los procesos de secado, al ser aplicadas al objeto de estudio.
- B. Exponer los procedimientos de cálculo y las ecuaciones satisfactorias para la determinación de los parámetros fundamentales del proceso de secado natural de las menas lateríticas.
- C. Establecer los gráficos de comportamiento de los parámetros fundamentales del proceso investigado.

Para cumplir con el objetivo general se desarrollan las siguientes tareas:

- A.1- Actualizar el estado del arte en relación con la temática de secado, a partir de la sistematización de los conocimientos expuestos en los trabajos precedentes.
- A.2- Exponer un sistema de conocimiento actualizado sobre:
 - Las teorías de secado actualmente usadas para explicar el mecanismo de movimiento de la humedad en materiales porosos y;
 - La teoría básica necesaria para el establecimiento del procedimiento de cálculo para la determinación de los parámetros fundamentales del proceso estudiado.
- **B.3-** Exponer los procedimientos y las ecuaciones para el cálculo de los siguientes parámetros del proceso:
 - Los flujos de calor que inciden en el proceso de secado natural.
 - La radiación solar global que incide sobre la superficie de secado de las pilas.
 - La distribución de temperatura y humedad en las pilas de menas lateríticas.
 - La velocidad de secado y la humedad del mineral en la superficie de las pilas.
 - El área de exposición y el volumen de las pilas de minerales con geometría de su sección transversal triangular.
- C.4- Calcular los parámetros del proceso anteriormente definidos.
- C.5- Simular la distribución de humedad que experimentan las menas lateríticas durante la implementación del proceso de secado natural.
- **D.6-** Exponer los beneficios económicos y el impacto ambiental asociados a la implementación del proceso en la empresa "Comandante Ernesto Che Guevara".

Capítulo 1

Fundamentos teóricos relacionados con los

procesos y las teorías de secado

CAPÍTULO 1

FUNDAMENTOS TEÓRICOS RELACIONADOS CON LOS PROCESOS Y LAS TEORÍAS DE SECADO

1.1-Introducción

En este capítulo se presenta un análisis de las teorías de secado actualmente usadas para explicar el proceso de secado de los materiales porosos, tomando en consideración sus fundamentos, implicaciones y limitaciones. Además se exponen las investigaciones precedentes relacionadas con la temática y la teoría básica asociada a los procesos de secado. El objetivo del presente estudio es establecer los fundamentos teóricos de los procesos de secado que son necesarios para la determinación de los parámetros fundamentales del proceso estudiado.

1.2- Generalidades sobre los procesos de secado

Los procesos de secado han sido utilizados desde que se descubrió que los alimentos pueden ser preservados por este medio y que algunos materiales, a través del secado, pueden convertirse en buenos materiales estructurales. Actualmente una gran cantidad de productos son secados por diversas razones: la preservación, la reducción de peso o volumen para su transporte, el mejoramiento de su estabilidad dimensional, o como una etapa más de su procesamiento industrial.

La importancia de los procesos de secado se puede apreciar a través de los estudios realizados por Franzen *et al.* (1987) quienes estimaron que a nivel mundial más de $2 \cdot 10^5$ MJ de energía se consumen en el secado de alimentos cada año y, por otro lado, Strumillo *et al.* (1995) determinaron que 12 % del consumo mundial de energía a nivel industrial es destinado a los procesos de secado.

A pesar de que los datos anteriores señalan al secado como uno de los procesos a nivel industrial más empleado, todavía se desconocen muchos aspectos relacionados con las etapas y los mecanismos de movimiento de la humedad implicados en el mismo. Esto se debe en gran parte a la complejidad de la estructura de los materiales a

secar, porque a nivel microscópico son muy irregulares y complejos (Hernández y Quinto, 2005).

1.2.1- Mecanismos de movimiento de la humedad

Para explicar el movimiento de la humedad en un material poroso durante el proceso de secado, en la literatura se pueden encontrar referencias a los siguientes mecanismos de movimiento de la humedad (Hernández y Quinto, 2003a):

- 1. Difusión líquida: debido a los gradientes de concentración de la humedad.
- 2. Difusión de vapor: debido a los gradientes de presión parcial del vapor
- 3. Movimiento de líquido: debido a fuerzas capilares
- **4.** Flujo de líquido o vapor: debido a diferencias en la presión que existe en el interior de los poros y el agente secante.
- 5. Efusión: se presenta cuando el camino libre medio de las moléculas de vapor es del orden del diámetro de los poros.
- 6. Movimiento de líquido: debido a la gravedad.
- 7. Difusión superficial.

De forma general se considera que el mecanismo de flujo capilar es el que predomina durante el periodo de secado de velocidad constante, mientras que los mecanismos de condensación-evaporación y flujo de vapor corresponden al periodo de velocidad decreciente (Keey, 1980).

El estudio de estos mecanismos, aplicados al análisis del proceso de secado, ha dado lugar a diferentes teorías de secado, cuya descripción es el objetivo principal del epígrafe que a continuación se expone.

1.2.2- Antecedentes y estado actual de las teorías de secado

Los primeros intentos realizados para tratar de explicar el proceso de secado y los mecanismos que intervienen en el mismo datan de la primera década del siglo XX. A partir de entonces, se han publicado en la literatura científica diversas teorías que buscan describir la forma en que se desarrolla este proceso. A partir de estas teorías fueron establecidos múltiples modelos generales de secado. La mayor parte de tales

modelos se desarrollaron con base en el conocimiento empírico, por lo que solo son útiles para describir el proceso de secado de una manera muy global. Sin embargo, también se ha recurrido a los conocimientos que proporcionan la termodinámica, la mecánica de fluidos y la transferencia de calor, entre otras disciplinas científicas, para plantear modelos matemáticos que describan el proceso de secado desde un punto de vista más formal (Hernández y Quinto, 2005). Las teorías actualmente usadas para explicar el proceso de secado de los materiales porosos son las que a continuación se describen.

En 1907 se enuncia la **teoría capilar** la cual refiere que durante el secado el transporte del líquido se produce a través de los interticios y sobre la superficie del sólido debido a la atracción molecular entre el líquido y el sólido (Bukingham, 1907). Algunos investigadores han señalado que en el secado de sólidos granulares, el flujo de humedad es determinado totalmente por fuerzas capilares por lo que es independiente de la concentración de humedad. Sin embargo, se ha demostrado a través de experimentos, que el flujo de humedad puede ser en la dirección del incremento de concentración si la fuerza conductora predominante es el gradiente de tensión.

La **teoría de difusión líquida** considera que el movimiento de la humedad durante el secado se debe únicamente a la difusión líquida, por lo que se puede representar por la Ley de Fick (Lewis, 1921), la referida ley ha sido resuelta considerando coeficientes de difusión constantes, medios isotrópicos y condiciones de frontera de primer orden. Esta teoría, en los últimos años, ha ganado preferencias entre los investigadores en el área de los alimentos y granos por los buenos resultados que se obtienen al utilizarla.

Por su parte, la **teoría de condensación-evaporación** (o teoría de Henry) tiene en cuenta la difusión simultánea de calor y masa, asume que los poros forman una red continua de espacios incluidos en el sólido y que la cantidad de vapor varía de forma lineal con la concentración de vapor y la temperatura. Esta teoría además considera que el flujo capilar no es el único mecanismo de transporte presente al inicio del periodo de velocidad de secado decreciente, sino que también ocurre la transferencia de vapor por difusión (Henry, 1939).

Entre tanto la **teoría de Philip y De Vries** considera que la humedad se desplaza tanto por difusión como por capilaridad (Philip y De Vries, 1957). Estos investigadores derivaron las ecuaciones que describen la transferencia de calor y masa en materiales porosos bajo los gradientes combinados de temperatura y humedad; y extendieron sus modelos para mostrar separadamente los efectos de los componentes isotérmicos y térmicos de la transferencia de vapor. La limitación de esta teoría radica en que las ecuaciones de los modelos sólo se usan en el primer periodo de secado, debido a que es, en dicho periodo, donde se mantiene en el medio poroso una película de humedad continua, en el interior de los poros.

De forma análoga la **teoría de Krischer y Berger-Pei** establece que durante el secado la humedad puede migrar en el estado líquido por capilaridad y en el estado vapor por un gradiente de concentración de vapor (Krischer, 1963). Por su parte, Berger y Pei (1973) señalaron que las principales dificultades encontradas en el modelo de Krischer son la aplicación de la isoterma de sorción y el uso de las condiciones de frontera de primer tipo. Estos investigadores, a diferencia de Krischer (1963), emplearon las ecuaciones acopladas de la transferencia de calor y masa.

Las dos teorías anteriores (las enunciadas por Philip y De Vries-Krischer y por Berger-Pei) fueron los primeros intentos por lograr un modelo general del proceso de secado, en donde se considera que la migración de la humedad se debe a más de un mecanismo.

La consideración de que los flujos debido a la difusión de vapor y líquida están conformados por dos partes: una debida al gradiente de concentración de humedad total y la otra debido al gradiente de temperatura fue establecida en la **teoría de Likov** (Likov, 1966). Es una de las teorías más completa de las enunciadas hasta la actualidad para explicar el proceso de secado de los materiales porosos. Sin embargo, no ha sido completamente aceptada dado a que no existe consenso entre los investigadores en cuanto a la validez y el significado del potencial de transferencia de masa, introducido por primera vez por Likov en 1966.

Las ecuaciones de conservación para un volumen promedio del sólido a partir de las ecuaciones de cada fase del proceso fueron establecidas en la **teoría de Whitaker**

(Whitaker, 1977; Whitaker y Chou, 1983). Esta modelación general no difiere sustancialmente de la planteada por Luikov (1966), pero debido a que tiene un buen sustento físico y matemático, ha tenido buena aceptación entre los investigadores de la temática de secado, al grado de ser considerada como la mejor aproximación al estudio del secado en materiales porosos. Hoy día el modelo de Whitaker, aunque es casi imposible de resolver analíticamente, se considera el más completo y preciso para describir los fenómenos que ocurren durante el proceso de secado de un sólido poroso.

El modelo integral de la transferencia simultánea de calor y masa que considera todos los factores que intervienen en el proceso de secado está contenido en la **teoría de Kowalski-Strumillo** (Kowalski y Strumillo, 1997), el mismo implica serios problemas para resolverse analíticamente, es por ello que en uno de sus trabajos posteriores (Kowalski y Strumillo, 2001) sugirieron que podría establecerse un modelo más simple, con base en la termodinámica de los procesos irreversibles, como lo hizo Luikov (1966), pero que tome en cuenta la transferencia de calor, masa y la presencia de los efectos esfuerzo-deformación que tienen lugar durante el secado.

La incorporación de las ecuaciones de esfuerzo-deformación, a las de transferencia de calor y masa, constituye la novedad de esta teoría ya que con anterioridad casi todos los modelos de secado consideraban que el sólido no sufría deformaciones, lo que representa una simplificación que facilita la solución del sistema de ecuaciones diferenciales. La solución del sistema de ecuaciones generado permite conocer simultáneamente: humedad, temperatura, deformación y esfuerzo en los materiales durante el proceso de secado. Esta teoría es relativamente reciente, sin embargo, constituye una de las aproximaciones más interesantes conocidas hasta hoy, para estudiar los fenómenos de esfuerzo-deformación de un sólido durante el secado.

Como se ha indicado en este epígrafe, existen varias teorías que explican el transporte de la humedad en medios porosos, para las cuales se han desarrollado diversos modelos generales. Sin embargo, los modelos más difundidos actualmente son los que consideran la difusión simultánea de vapor y líquido (Henry, 1939; Philip y De Vries, 1957), los que se sustentan en la termodinámica de los procesos irreversibles (Likov, 1966; Whitaker, 1977; Whitaker y Chou, 1983) y los que se fundamentan en la

transferencia simultánea de calor, masa y momentum (Kowalski y Strumillo, 1997, 2001), los restantes se utilizan en menor medida.

1.3- Investigaciones precedentes sobre los procesos de secado

1.3.1- Modelos matemáticos del secado solar

Joshi *et al.* (2004) exponen el comportamiento de varios sistemas de secado solar utilizando los modelos matemáticos que caracterizan el intercambio de humedad y energía entre el producto y el agente de secado (el aire), también utilizan las expresiones correspondientes para describir el flujo de calor transferido entre el aire y el producto. Los autores analizan secadores solares directos, indirectos y combinados. Finalmente determinan sus eficiencias térmicas y las comparan y determinan las causas que generan las diferencias entre sus respectivos valores.

Restrepo y Burbano (2005) estudian el proceso de secado solar de Café y Arroz, para ello evalúan diferentes tipos de secadores mediante la aplicación de modelos matemáticos y su análisis termodinámico para evaluar cual tiene mejores perspectivas energéticas. Finalmente determinaron que los secadores tipo invernadero con cubierta de plástico térmico son más eficientes desde el punto de vista energético.

Montoya y Jiménez (2006) muestran los resultados de un experimento de secado al aire libre de la especie de Bambú Guadua Angustifolia, apoyados en los resultados experimentales plantearon diferentes modelos matemáticos (exponenciales, lineales, polinomiales y logarítmicos) para describir el comportamiento del contenido de humedad en función del tiempo de secado. Basado en el coeficiente de correlación propusieron el modelo exponencial para lograr el mejor ajuste a las curvas experimentales.

Abdel-Rehim y Nagib (2007) exponen los modelos del secado solar de Pulpa de Bagazo utilizando aire por convección natural y forzada, emplearon como ecuación de balance la expresión reportada por Duffie y Beckman (1980), para la convección natural y para la convección forzada emplean una ecuación diferencial que relaciona los diferentes calores que intervienen en el proceso.

En Cuba el secado solar ha sido estudiado por múltiples investigadores (Bergues *et al.*, 2003a y b; 2006; Pacheco *et al.*, 2006; Leyva *et al.*, 2010). Sin embargo, las

publicaciones científicas antes relacionadas no contienen los modelos del proceso de secado natural de los materiales examinados, solo se circunscriben al análisis energético y termodinámico del proceso.

1.3.2- Secado natural de materiales

El secado natural o secado directo al sol es el proceso en el cual los materiales se exponen directamente a la radiación solar colocándolos sobre el suelo o en dispositivos específicos. Es uno de los usos más antiguos de la energía solar, siendo aún el proceso más utilizado en países en vías de desarrollo para el secado de productos agrícolas. Es un procedimiento con muy bajo costo económico y ambiental que por sus múltiples perspectivas es muy utilizado a nivel mundial

En el ámbito nacional, su empleo se reduce a las industrias alimenticia, cafetalera y maderera (Bergues *et al.*, 2006; Pacheco *et al.*, 2006) y en menor medida en la industria del níquel, aunque en esta última se han desarrollado diversas investigaciones con la finalidad de implementarlo de forma permanente.

1.3.3- Secado natural de las menas lateríticas

Se conoce de la práctica internacional, fundamentalmente en Brasil, Filipinas, Francia y Australia que el manejo reiterado de las menas lateríticas en los depósitos de secado solar a la intemperie influye positivamente en la homogenización del material y la reducción de su contenido de humedad (Estenoz *et al.*, 2005).

En Cuba el secado natural se desarrolla en las empresas "Comandante Ernesto Che Guevara" y "Comandante René Ramos Latour", pero durante la implementación del proceso existen dificultades que limitan la obtención de eficiencias aceptables en el mismo (Retirado, 2007; Vinardell, 2011). Actualmente, las menas lateríticas se someten al secado (Figura 1.1) y no se conoce el potencial de secado de la región en el periodo en que se expone el material y por tanto no se tiene la certeza de la variación de humedad que puede experimentar el producto y el tiempo de secado que se requiere para reducir su humedad desde un valor inicial conocido a otro final deseado.

El secado natural de las menas lateríticas se ha implementado como alternativa para racionalizar el proceso tecnológico de obtención de níquel (Estenoz, 2009). Sin

embargo, el mismo se ha basado en la experiencia práctica y en algunos estudios empíricos, sin considerar la evaluación rigurosa de los procesos de transferencia de calor y masa que inciden en el proceso en las condiciones de explotación de las empresas niquelíferas. Estudios empírico-teóricos realizados con menas lateríticas en los yacimientos de Moa y Pinares de Mayarí evidencian que con el secado natural solo es posible evaporar la humedad ligada mecánicamente al material debido a los bajos regímenes de temperatura que se generan en el proceso de secado a la intemperie y establecen que la humedad del material varía en función de las variables climatológicas, la granulometría y la masa de material sometida a secado (Retirado *et al.*, 2007).

Figura 1.1. Implementación del secado natural de las menas lateríticas en Moa. **Fuente:** Espinosa y Pérez, 2010b.

Otros estudios teórico-experimentales han permitido establecer los modelos que relacionan la humedad con las variables anteriormente expuestas, así como, la relación existente entre la adherencia de las menas, la humedad, la granulometría y el ángulo de inclinación de la superficie de contacto (Retirado *et al.*, 2009).

Las investigaciones relacionadas con el secado natural de las menas lateríticas han tomado dos direcciones, una hacia los criterios tecnológicos y mineralógicos que influyen en la eficiencia y homogenización durante el secado (Estenoz *et al.*, 2007b) y otra destinada al estudio experimental de la desorción de la humedad, en correspondencia con las diferentes variables climatológicas que intervienen en el secado natural (Retirado *et al.*, 2007, Retirado, 2010).

1.4- Teoría básica de los procesos de secado

Diversos investigadores coinciden en que la desorción de la humedad en los materiales expuestos a secado está influenciada por diversos parámetros los cuales deben ser considerados en el estudio del proceso. A continuación se exponen los más importantes según la literatura especializada en la temática.

1.4.1- Contenido de humedad del material

El factor de mayor influencia en la velocidad de secado, que afecta en general a todos los ratios de secado, es el contenido de humedad del material. La cantidad de humedad presente en un material puede ser expresada en base húmeda o en base seca, e indicada como decimal o porcentaje (Corvalan y Horn, 1995).

El contenido de humedad en base húmeda (H_{bh}), definido como el peso del agua presente en el producto por unidad de peso del material sin secar, viene dado por la expresión 1.1. De igual manera, el contenido de humedad en base seca (H_{bs}), definido como el peso del agua presente en el producto por unidad de peso del material seco, se indica en la expresión 1.2. La relación entre H_{bh} y H_{bs} se expresa a través de las expresiones 1.3 y 1.4, respectivamente.

$$H_{bh} = \frac{m_h}{m_0} = \frac{m_0 - m_s}{m_0} \tag{1.1}$$

$$H_{bs} = \frac{m_h}{m_s} = \frac{m_0 - m_s}{m_s}$$
(1.2)

Donde:

 H_{bh} y H_{bs} : humedad del producto en base húmeda y seca, respectivamente; kg/kg.

m_h: cantidad de agua en el producto húmedo; kg.

*m*₀: masa inicial de material sin secar; kg.

*m*_s: masa de la materia seca en el producto; kg.

$$H_{bh} = 1 - \left(\frac{1}{H_{bs} + 1}\right) \tag{1.3}$$

$$H_{bs} = \left(\frac{1}{1 - H_{bh}}\right) - 1 \tag{1.4}$$

Habitualmente en ensayos de secado donde el producto se va pesando de forma regular disponiendo de un registro de pérdida de peso, el contenido en humedad instantáneo para cualquier tiempo τ , en base húmeda [H_{bh}(τ)] o seca [H_{bs}(τ)], se obtiene mediante las expresiones 1.5 y 1.6.

$$H_{bh}(\tau) = 1 - \left[\frac{\left(1 - H_{0_{bh}}\right) \cdot m_0}{m(\tau)}\right]$$
(1.5)

$$H_{bs}(\tau) = \left[\frac{\left(1 + H_{0_{bs}}\right) \cdot m_0}{m(\tau)}\right] - 1 \tag{1.6}$$

Donde:

 $H_{0_{bh}}$ y $H_{0_{bs}}$: contenido de humedad inicial en base húmeda y seca; kg/kg.

 $m(\tau)$: masa del material en el tiempo τ ; kg.

1.4.2- Ratio de humedad

El ratio de humedad se calcula por la expresión 1.7. Sin embargo, es habitual en las aplicaciones de secado despreciar el contenido de humedad de equilibrio, ya que la humedad relativa del aire fluctúa continuamente durante el proceso, siendo H_e un parámetro difícil de determinar. De esta manera, el ratio de humedad que se utiliza comúnmente es el calculado a través de la expresión 1.8.

$$R_{H} = \frac{H(\tau) - H_{e}}{H_{0} - H_{e}}$$
(1.7)

$$R_H = \frac{H(\tau)}{H_0} \tag{1.8}$$

 R_{H} : ratio de humedad; unidades decimales.

 $H(\tau)$: contenido de humedad en cada instante de tiempo τ ; kg/kg.

 H_e : contenido de humedad de equilibrio; kg/kg.

 H_0 : contenido de humedad inicial; kg/kg.

1.4.3- Requerimiento térmico del proceso de secado

El requerimiento térmico para secar un material se denomina calor latente de vaporización (λ) y representa la cantidad de energía que tiene que absorber el material para evaporar 1 kg de agua (Corvalan y Horn, 1995). En el agua libre, este valor depende exclusivamente de la temperatura. Su valor en función del mencionado parámetro se puede determinar por la expresión empírica 1.9.

$$\lambda = \frac{R}{M_{agua}} \cdot \left[C_{S1} - C_{S2} \cdot \left(T_{agua} + 273, 16 \right) \right]$$
(1.9)

Donde:

 λ : calor latente de vaporización del agua; J/kg.

R: constante de los gases; 8314 J/kmol·K.

M_{agua}: peso molecular del agua; 18,01 kg/kmol.

 C_{S1} y C_{S2} : constantes cuyo valores son 6547,1 y 4,23; adimensionales.

Tagua: temperatura del agua; °C.

1.4.4- Régimen de secado

Para cualquier sólido cuyo proceso de secado transcurra completamente dentro del *periodo de velocidad de secado constante*, el régimen de secado puede ser determinado por la expresión 1.10 reportada por Boizán (1991).

$$N = N_C = -\frac{m_s}{A} \left(\frac{dH}{d\tau}\right) \tag{1.10}$$

Siendo:
$$m_s = \frac{m_0 \cdot (100 - H_0)}{100}$$
 (1.10a)

N: régimen de secado; kg/m²·s.

 $N_{\rm C}$: régimen de secado en el periodo de velocidad constante; kg/m²·s.

A: área de transferencia de calor y masa donde se lleva a cabo la evaporación; m².

 $dH/d\tau$: velocidad de secado; kg/kg·s.

Para calcular el régimen de secado de un material en el *periodo de velocidad de secado decreciente,* la práctica más empleada según las investigaciones consultadas (Boizán, 1991) es la que considera el comportamiento de la curva de velocidad de secado como una línea recta, la cual puede ser representada según la expresión 1.11.

$$N = N_D = \frac{N_C \cdot [H(\tau) - H_e]}{H_c - H_e} = k_2 \cdot [H(\tau) - H_e]$$
(1.11)

Donde:

 N_D : régimen de secado en el periodo de velocidad decreciente; kg/m²·s.

 $H(\tau)$: humedad de material en un instante τ cualquiera; kg/kg.

*H*_e: humedad de equilibrio del material; kg/kg.

H_c: humedad del material al finalizar el régimen constante; kg/kg.

 k_2 : coeficiente de secado para el segundo periodo; kg/m²·s.

1.4.5- Ratio de secado

Cuando el material que debe secarse se pesa a intervalos predefinidos, puede trazarse la curva del contenido en humedad vs. tiempo de secado. Al diferenciar la curva, se obtiene una información muy importante: la velocidad de secado en función del tiempo de operación o ratio de secado (R_s). La velocidad de secado puede expresarse como se indica en la expresión 1.12 (Montoya y Orozco, 2005).

$$R_S = \frac{dH}{d\tau} = \frac{H(\tau + d\tau) - H(\tau)}{d\tau}$$
(1.12)

 $R_{\rm S}$: ratio de secado; kg/kg·s o %/s. dH: variación de humedad; kg/kg o %. $d\tau$: variación de tiempo; s.

1.4.6- Propiedades termofísicas del aire que influyen en el secado natural

Estas propiedades son necesarias para el cálculo del intercambio de calor y masa durante el secado solar a la intemperie de los materiales. Las mismas pueden ser calculadas a través de las ecuaciones empíricas 1.13-1.20 (Tiwari, 2002), las referidas ecuaciones han sido validadas en diversas regiones del mundo y utilizadas con éxito en múltiples investigaciones precedentes relacionadas con el secado solar de diferentes materiales.

$$k_a = 0,0244 + 0,6763 \cdot 10^{-4} \cdot T_p \tag{1.13}$$

$$\rho_a = \frac{353,44}{T_p + 273,15} \tag{1.14}$$

$$Cp_a = \left(999, 2 + 0.1434 \cdot T_p + 1.101 \cdot 10^{-4} \cdot T_p^2 - 6.7581 \cdot 10^{-8} \cdot T_p^3\right) \cdot 10^{-3}$$
(1.15)

$$\mu_a = 1,718 \cdot 10^{-5} + 4,620 \cdot 10^{-8} \cdot T_p \tag{1.16}$$

$$v_a = \frac{\mu_a}{\rho_a} \tag{1.17}$$

$$\alpha_a = \frac{k_a}{\rho_a \cdot C p_a} \tag{1.18}$$

$$\Pr = \frac{v_a}{\alpha_a} \tag{1.19}$$

$$\beta_a = \frac{1}{T_p + 273,15} \tag{1.20}$$

Siendo:

$$T_p = \frac{T_s + T_a}{2} \tag{1.21}$$

Donde:

- ka: conductividad térmica del aire; W/m·K.
- T_p : temperatura promedio o de película; °C.
- ρ_a : densidad del aire; kg/m³.
- *Cp*_a: calor específico a presión constante del aire; kJ/kg·K.
- μ_a : viscosidad dinámica del aire; N·s/m².
- v_a : viscosidad cinemática del aire; m²/s.
- α_a : difusividad térmica del aire; m²/s.
- Pr: número de Prandtl del aire; adimensional.
- β_a : dilatación térmica del aire; K⁻¹.
- T_s : temperatura de la superficie de secado; °C.
- T_a : temperatura del aire; °C.

1.5- Conclusiones del capítulo 1

- Quedó establecido el marco teórico de la investigación, el mismo contiene e integra los criterios más importantes a considerar en la determinación de los parámetros fundamentales del proceso de secado natural de las menas lateríticas.
- Las fuentes bibliográficas consultadas contienen un soporte matemático satisfactorio para la confección de un procedimiento que permita la determinación de los parámetros fundamentales de los procesos de secado. Sin embargo, en el caso concreto del secado natural de las menas lateríticas cubanas deben considerarse las situaciones físicas particulares que se presentan durante su implementación para obtener las ecuaciones específicas del proceso.

Capítulo 2

Procedímiento para la determinación de los parámetros fundamentales del proceso de secado natural de las menas lateríticas

CAPÍTULO 2

PROCEDIMIENTO PARA LA DETERMINACIÓN DE LOS PARÁMETROS FUNDAMENTALES DEL PROCESO DE SECADO NATURAL DE LAS MENAS LATERÍTICAS

2.1-Introducción

Los parámetros fundamentales del proceso de secado natural de las menas lateríticas son: los flujos de calor que inciden en la superficie de secado, la variación de temperatura y humedad del material, la velocidad de secado, el área de exposición y el volumen de las pilas de minerales (Retirado, 2012). El **objetivo** del presente capítulo es exponer el procedimiento de cálculo y las expresiones matemáticas que permiten determinar los referidos parámetros en las condiciones de explotación de la empresa "Comandante Ernesto Che Guevara".

2.2- Flujos de calor que inciden en el proceso de secado natural

2.2.1- Calor por radiación que llega a la superficie

Para determinar el flujo de calor por radiación que recibe la pila de menas lateríticas se realiza el balance de energía en la superficie de secado de la misma y se obtiene la expresión 2.1.

$$Q_{Rad} = \alpha_c \cdot G_c + \alpha_s \cdot I(\varphi, \psi) - \vartheta \cdot I(\varphi, \psi) = \alpha_c \cdot G_c + (\alpha_s - \vartheta) \cdot I(\varphi, \psi)$$
(2.1)

Donde:

 Q_{Rad} : calor por radiación que se aprovecha en el secado de las menas lateríticas; W/m². α_c : absortividad del cielo; adimensional.

 G_c : irradiación del cielo; W/m².

 α_s : absortividad solar de las menas lateríticas; adimensional.

 $I(\varphi, \psi)$: radiación solar global que incide sobre la superficie de secado de la pila; W/m².

9: reflectividad de las menas lateríticas; adimensional.

La irradiación del cielo debido a la emisión atmosférica se calcula por la expresión 2.2 recomendada por Duffie y Beckman (1991).

$$G_c = \sigma \cdot \left(0,0552 \cdot T_a^{1,5}\right)^4$$
(2.2)

Donde:

 σ : constante de Stefan-Boltzman; 5,67·10⁻⁸ W/m²·K⁴.

 T_{cielo} : temperatura efectiva del cielo; K.

2.2.1.1- Radiación solar que incide sobre la superficie

Como consecuencia de las diferentes regiones y composición de la atmósfera, no toda la energía extraterrestre llega a la superficie de la Tierra, modificándose su naturaleza, y sobre todo, su componente direccional (Luboschik y Schalajda, 1990). Es por ello que la radiación global que incide sobre una superficie inclinada en la Tierra consta de tres componentes, y se calcula por la expresión 2.3.

$$I_G = I_B + I_D + I_R \tag{2.3}$$

Donde:

 I_G : radiación global; W/m².

 I_B : radiación directa; W/m².

 I_D : radiación difusa; W/m².

 I_R : radiación reflejada; W/m².

Si se conoce la radiación global sobre una superficie horizontal en sus dos componentes, directa y difusa, existen varios métodos y modelos matemáticos para determinar la radiación global sobre una superficie inclinada, uno de ellos es el establecido por Alaiz (1981), en el cual es necesario determinar la exposición solar extraterrestre sobre una superficie horizontal (I_0), para ello se emplea la expresión 2.4. Como se observa, al analizar de forma integrada las ecuaciones 2.4-2.8, en una latitud dada para cada día del año y a cada hora solar le corresponde un valor diferente de I_0 .

$$I_0 = I_S \cdot \cos(\phi) \equiv I_S \cdot sen(h_s)$$
(2.4)

Siendo:

$$I_{S} = I_{CS} \cdot \left[1 + 0,033 \cdot \cos\left(\frac{360 \cdot n_{d}}{365,25}\right) \right]$$
(2.5)

$$\cos(\phi) = sen(l) \cdot sen(\delta_s) + \cos(l) \cdot \cos(\delta_s) \cdot \cos(w_h) \equiv sen(h_s)$$
(2.6)

$$\delta_s = 23,45 \cdot sen \left[360 \frac{(284 + n_d)}{365} \right]$$
(2.7)

$$w_h = n_h \cdot 15^{\circ} \tag{2.8}$$

Donde:

- I_0 : irradiancia extraterrestre horaria en la superficie horizontal; W/m².
- I_S : irradiancia solar extraterrestre normal a la radiación; W/m².
- ϕ : ángulo de incidencia; grados sexagesimales.
- h_s : altura solar; grados sexagesimales.
- I_{CS} : constante solar; su valor más aceptado es 1367 W/m².
- n_d : número del día del año (siendo n_d = 1 para el 1ro de enero); adimensional.
- *l* : latitud; grados sexagesimales.
- δ_s : declinación solar; grados sexagesimales.
- *w_h*: ángulo horario; grados sexagesimales.
- n_h : número de horas antes o después del mediodía solar; adimensional.

La declinación solar varía entre 23,45° y -23,45° desde el solsticio de verano al solsticio de invierno. El ángulo horario se calcula considerando que a cada hora le corresponde una distancia de 15° (Duffie y Beckman, 1991). En la Tabla 2.1 se muestra el valor de dicho ángulo para cada hora en el hemisferio norte.

Hora del día	6	7	8	9	10	11	12	13	14	15	16	17	18
n _h	6	5	4	3	2	1	0	1	2	3	4	5	6
W _h	-90	-75	-60	-45	-30	-15	0	+15	+30	+45	+60	+75	+90

Tabla 2.1. Variación diaria del ángulo horario en el hemisferio norte.

Por su parte, la altura de culminación h_c , la hora de salida y puesta del Sol w_s y el número de horas de sol T_d (orto y ocaso solar o duración del día) para cada día del año se calculan por las expresiones 2.9; 2.10 y 2.11, respectivamente.

$$h_c = 90 - \left| l - \delta_s \right| \tag{2.9}$$

$$w_s = \arccos\left[-\tan(\delta_s) \cdot \tan(l)\right] \tag{2.10}$$

$$T_d = \frac{2}{15} \cdot w_s = \frac{2}{15} \cdot \arccos\left[-\tan(\delta_s) \cdot \tan(l)\right]$$
(2.11)

Donde:

h_c: altura de culminación; grados sexagesimales.

 w_s : hora de salida y puesta de Sol; adimensional.

 T_{d} : número de horas de Sol; adimensional.

Para calcular las componentes directa (I_B) y difusa (I_D) de la radiación incidente sobre la superficie horizontal (I_H) es necesario utilizar una serie de correlaciones. Se definen entonces, los coeficientes k_T , k_B y k_D , los mismos se calculan por las expresiones 2.12, 2.13 y 2.14 (Duffie y Beckman, 1991).

$$k_T = \frac{I_H}{I_0} \tag{2.12}$$

$$k_B = \frac{I_B}{I_0} \tag{2.13}$$

$$k_D = \frac{I_D}{I_0} \tag{2.14}$$

Donde:

 k_{T} : coeficiente de transmisión total atmosférico; adimensional.

 I_H : radiación incidente sobre la superficie horizontal; W/m².

 k_B y k_D : coeficientes de transmisión fraccionales; adimensionales.

Obtenido el coeficiente k_T (expresión 2.12) se determina la relación I_D/I_H (expresiones 2.15; 2.16 o 2.17, según corresponda) y luego, haciendo el despeje correspondiente, se obtiene la radiación difusa (I_D). Por su parte, la radiación directa horizontal (I_B) se determina mediante la expresión 2.18.

$$\frac{I_D}{I_H} = 1 - 0,09 \cdot k_T \qquad \text{para } k_T \le 0,22 \qquad (2.15)$$

$$\frac{I_D}{I_H} = 0,951 - 0,160 \cdot k_T + 4,388 \cdot k_T^2 - 16,638 \cdot k_T^3 + 12,336 \cdot k_T^4 \qquad \text{para } 0,22 < k_T \le 0,8 \qquad (2.16)$$

$$\frac{I_D}{I_H} = 0,165 \qquad \text{para } k_T > 0,80 \qquad (2.17)$$

$$I_B = I_H - I_D \tag{2.18}$$

Luego para calcular la radiación solar global $[I(\phi,\psi)]$ que incide sobre la superficie de secado de la pila de minerales la cual está inclinada y orientada en ϕ y ψ grados, se emplea la expresión 2.19, nótese que esta expresión depende del ángulo ϕ . En el caso de las pilas de sección transversal parabólica el ángulo de referencia para el cálculo es el tangencial (ϕ_t) y para las pilas de sección triangular se asume para el cálculo el ángulo maximal (ϕ_m). Estos ángulos pueden ser determinados en función de la granulometría y la humedad del material o aplicando trigonometría si se conoce el ancho de la base y la altura de la pila de minerales.

$$I(\varphi,\psi) = I_G = I_B \cdot R(\varphi,\psi) + I_D \cdot \frac{1 + \cos(\varphi)}{2} + I_H \cdot \frac{1 - \cos(\varphi)}{2} \cdot \eta$$
(2.19)

Siendo:

$$R(\varphi,\psi) = \frac{sen(\delta_s) \cdot sen(l-\varphi) + \cos(\delta_s) \cdot \cos(l-\varphi) \cdot \cos(w_h)}{sen(\delta_s) \cdot sen(l) + \cos(\delta_s) \cdot \cos(l) \cdot \cos(w_h)}$$
(2.20)

 $R(\varphi, \psi)$: factor de conversión; adimensional.

 ψ : orientación de la superficie de la pila respecto al eje Norte-Sur; grados.

 η : reflectividad del suelo frente al plano receptor, habitualmente oscila entre 0,17 y 0,2.

Luego el flujo de calor por radiación que recibe la superficie de secado de la pila de minerales se calcula sustituyendo las expresiones 2.2 y 2.19 en la 2.1.

2.2.2- Calor por convección que llega o sale de la superficie

Según la Ley de Newton-Richman el flujo de calor por convección se determina por la expresión 2.21 reportada por Incropera y De Witt (2003).

$$Q_{Conv} = h_a \cdot \left(T_s - T_a\right) \tag{2.21}$$

Donde:

 Q_{Conv} : calor por convección que intercambian la corriente de aire y la superficie; W/m².

 h_a : coeficiente de transferencia de calor por convección del aire; W/m²·K.

 T_s : temperatura de la superficie de secado; K.

 T_a : temperatura del aire; K.

Debido a que el secado solar de las menas lateríticas se desarrolla a la intemperie, el material recibe el calor transferido por el aire en condiciones naturales, en estas circunstancias el intercambio de calor se produce por convección libre, forzada y mixta. Lo anterior fue corroborado por Retirado *et al.* (2011).

Para calcular el número de Nusselt en la convección libre, forzada y mixta se emplean las expresiones 2.22; 2.23 y 2.24 propuestas por Tiwari y Sarkar (2006), Kasatkin (1987) e Incropera y De Witt (2003), respectivamente.
$$Nu_L = 0.56 \cdot (Gr \cdot \Pr)^{\frac{1}{4}} = 0.56 \cdot Ra^{\frac{1}{4}}$$
(2.22)

$$Nu_F = 2 + \frac{1}{40} \cdot \operatorname{Re}^{\frac{9}{10}} \cdot \operatorname{Pr}^{\frac{1}{3}} \cdot Gu^{\frac{2}{15}}$$
(2.23)

$$Nu_{M} = \left\{ \left[2 + 0,025 \cdot \operatorname{Re}^{\frac{9}{10}} \cdot \operatorname{Pr}^{\frac{1}{3}} \cdot Gu^{\frac{2}{15}} \right]^{3} \pm \left[0,56 \cdot \left(Gr \cdot \operatorname{Pr}\right)^{\frac{1}{4}} \right]^{3} \right\}^{\frac{1}{3}}$$
(2.24)

Donde:

Nu_L: número de Nusselt para la convección libre; adimensional.

Nu_F: número de Nusselt para la convección forzada; adimensional.

Nu_M: número de Nusselt para la convección mixta; adimensional.

Gr. número de Grashof; adimensional.

Pr: número de Prandtl del aire; adimensional.

Ra: número de Rayleigh; adimensional.

Re: número de Reynolds; adimensional.

Gu: número de Gujman; adimensional.

En el proceso objeto de estudio el coeficiente h_a se determina por la expresión 2.25, para ello se sustituyen las expresiones del número de Nusselt (expresiones 2.22; 2.23 o 2.24) en función del tipo de convección predominante. Luego h_a se sustituye en la expresión 2.21 y se obtiene el flujo de calor por convección que intercambian el aire y la superficie de secado.

$$h_a = \frac{Nu \cdot k_a}{L} \tag{2.25}$$

2.2.3- Calor por conducción que abandona la superficie

El calor que se transfiere por conducción (Q_{Cond}) desde la superficie de secado hacia el interior de la pila de minerales se calcula empleando la Ley de Fourier (expresión 2.26) reportada por Incropera y De Witt (2003).

$$Q_{Cond} = -k \cdot \frac{T_s(\tau) - T(\xi, \tau)}{\xi}$$
(2.26)

Donde:

 Q_{Cond} : calor transferido por conducción hacia el interior de la pila de lateritas; W/m². k: conductividad térmica de las menas lateríticas; W/m·K. $Ts(\tau)$: temperatura en la superficie de la pila de minerales en el instante τ ; K. $T(\xi, \tau)$: temperatura en el interior de la pila de minerales a la distancia ξ ; K. ξ : espesor de la capa donde se produce la conducción del calor; m.

La temperatura en la superficie de la pila en el instante τ [Ts(τ)] se considera como una función que varía con el tiempo (τ) y la inclinación de la superficie (ϕ). La misma se determina despejando de la ecuación 2.27, para ello se recomienda utilizar algún software apropiado.

$$\varepsilon \cdot \sigma \cdot [T_s(\tau)]^4 + h_a \cdot T_s(\tau) - \varepsilon \cdot \sigma \cdot T_a^4 - h_a \cdot T_a - \left\{ \alpha_s \left[\sigma \cdot \left(0,0552 \cdot T_a^{1,5} \right)^4 + I(\varphi,\psi) \right] \right\} = 0 \quad (2.27)$$

La temperatura de las menas lateríticas en el interior de la pila de minerales a la distancia ξ [T (ξ , τ)] se determina obteniendo la distribución de temperatura [$T(y, \tau)$], para ello fue necesario resolver la ecuación de difusión del calor (2.28).

$$\frac{1}{\alpha} \cdot \frac{\partial T}{\partial \tau} = \frac{\partial^2 T}{\partial y^2}$$
(2.28)

Con la condición inicial:

 $T(y,0) = \varphi(y)$ (0 ≤ y ≤ l) (2.29)

Y las condiciones de frontera:

$$T(0,\tau) = \mu_1(\tau) \qquad (\tau \ge 0) T(l,\tau) = \mu_2(\tau) \qquad (\tau \ge 0)$$
(2.30)

Haciendo uso de las condiciones iniciales y de frontera representadas en las expresiones 2.29 y 2.30 se aplica el método de separación de variables y se obtiene la solución de la expresión 2.28.

2.2.3.1- Distribución de temperatura en la pila de mineral

La expresión que caracteriza la distribución de temperatura $[T(y,\tau)]$ de cada sección de cada corte, se obtiene resolviendo la ecuación 2.31, con las condiciones de contorno representadas en el sistema de ecuaciones 2.32-2.35 (Retirado, 2012).

$$\frac{\partial T}{\partial \tau} - \alpha \cdot \frac{\partial^2 T}{\partial y^2} = f(y,\tau)$$
(2.31)

$$f(y,\tau) = 0 \tag{2.32}$$

$$T(y,0) = \varphi(y) = T_0$$
(2.33)

$$T(0,\tau) = \mu_1(\tau) = T_0$$
(2.34)

$$T(l,\tau) = \mu_2(\tau) = T_s(\tau)$$
 (2.35)

Para emplear este enfoque es necesario discretizar el problema de la distribución de temperatura y para ello se divide la pila en cortes de espesor fino y cada uno de estos en secciones de ancho suficientemente pequeño (Figura 2.1).

Figura 2.1. Esquema para el análisis de la distribución de temperatura y humedad. a) Pila de mineral; b) Corte de la sección transversal y c) Sección analizada.

Para resolver la ecuación 2.31 con las condiciones 2.32-2.35 se aplica el método de separación de variables y se obtiene según Retirado (2012):

$$T(y,\tau) = \sum_{n=1}^{\infty} 2 \frac{\cos(n\pi)}{n\pi} \cdot e^{\alpha \cdot \left(\frac{-n\pi}{l}\right)^2 \cdot \tau} \cdot \left[\int_{0}^{\tau} e^{\alpha \cdot \left(\frac{n\pi}{l}\right)^2 \cdot \theta} \cdot \frac{dT_s(\theta)}{d\tau} d\theta + T_s(0) - T_0 \right] \right] \cdot sen\left(\frac{n\pi}{l}y\right) + \left\{ T_0 + \frac{y}{l} [T_s(\tau) - T_0] \right\}$$
(2.36)

Donde:

 T_0 : temperatura inicial de las menas lateríticas; °C.

La expresión 2.36 constituye la ecuación satisfactoria para el cálculo de la distribución de temperatura del material en la pila de menas lateríticas expuestas a secado natural, en las condiciones de explotación de las empresas productoras de níquel.

2.3- Distribución de humedad en la pila de mineral

La expresión que caracteriza la distribución de humedad $[H(y,\tau)]$ en la pila de menas lateríticas se determina resolviendo la ecuación 2.37 con las condiciones iniciales y de frontera representadas en el sistema de ecuaciones 2.38 (Retirado, 2012).

$$\frac{\partial H}{\partial \tau} - k_u \frac{\partial^2 H}{\partial y^2} = f(y,\tau)$$
(2.37)

$$H(y,0) = \alpha(y)$$

$$H(0,\tau) = H_0$$

$$H(l,\tau) = H_s(\tau)$$
(2.38)

Donde:

H: humedad de las menas lateríticas; kg/kg.

 k_u : coeficiente de conducción de humedad; m²/s.

δ: coeficiente térmico de conducción de humedad; 1/°C.

T: temperatura de las menas lateríticas; °C.

 $\alpha(y)$: función que caracteriza el cambio de H_0 en cada instante τ y posición y; %.

 H_0 y $H_s(\tau)$: humedad inicial del mineral y en la superficie de la pila (para y = l); %.

Para resolver la ecuación 2.37 se aplica el método de separación de variables y al igual que para el caso de la distribución de temperatura se emplea la Figura 2.1. Luego se obtiene según Retirado (2012):

$$H(y,\tau) = \sum_{n=1}^{\infty} \begin{cases} -k_u \left(\frac{n\pi}{l}\right)^2 \tau \\ e \end{cases} \begin{bmatrix} \cos(n\pi) \left(\frac{2 \cdot \int e}{0} R_n(\theta) \cdot d\theta - 2 \cdot [H_1 - H_s(0)] \\ \frac{0}{n\pi} + \frac{2H_s(0)}{n\pi} + \frac{2H_s(0)}{n\pi} + \frac{2I_{n\pi} \int H_1(y) \cdot sen\left(\frac{n\pi}{l}y\right) dy - H_0 \cdot l}{n\pi \cdot l} \end{bmatrix} \\ + \frac{2[H_0 - H_s(0)] \cdot sen(n\pi)}{n^2 \pi^2} + \frac{2\left[n\pi \int H_1(y) \cdot sen\left(\frac{n\pi}{l}y\right) dy - H_0 \cdot l\right]}{n\pi \cdot l} \end{bmatrix} \\ \cdot sen\left(\frac{n\pi}{l}y\right) + H_0 + \frac{y}{l}[H_s(\tau) - H_0] \tag{2.39}$$

La expresión 2.39 constituye la ecuación satisfactoria para el cálculo de la distribución de humedad del material en la pila de menas lateríticas expuestas a secado natural, en las condiciones de explotación de las empresas productoras de níquel.

2.4- Velocidad de secado y humedad en la superficie de la pila

En la Figura 2.2 se muestra un esquema estructural del secado natural de las menas lateríticas que refleja los calores que influyen en el proceso, del análisis de la figura antes mencionada se establece la expresión 2.40. La misma constituye la ecuación general para el balance térmico y relaciona el régimen de flujo calórico (calor total) con el régimen de secado (*N*) en el proceso (Retirado, 2012).

$$\alpha_{s} \left[\sigma \cdot \left(0,0552 \cdot T_{a}^{1,5} \right)^{4} + I(\varphi,\psi) \right] \pm \frac{Nu \cdot k_{a}}{L} \cdot \left[T_{s}(\tau) - T_{a} \right] - k \cdot \frac{T_{s}(\tau) - T(\xi,\tau)}{\xi} = N \cdot \lambda$$
(2.40)

Figura 2.2. Calores que influyen en el proceso de secado natural del mineral.

Al particularizar, a las menas lateríticas, las expresiones 1.10 de N y 1.10a de m_s y después de sustituirla en la ecuación 2.40 se obtiene para el periodo de velocidad de secado constante:

$$-\frac{dH}{d\tau_1} = \frac{A \cdot \left\{\alpha_s \left[\sigma \cdot \left(0,0552 \cdot T_a^{1,5}\right)^4 + I(\varphi,\psi)\right] \pm \frac{Nu \cdot k_a}{L} \cdot \left[T_s(\tau) - T_a\right] - k \cdot \frac{T_s(\tau) - T(\xi,\tau)}{\xi}\right\}}{\left[\frac{m_0 \cdot (100 - H_0)}{100}\right] \cdot \lambda}$$
(2.41)

Luego se despeja $Hs(\tau)$ y se obtiene la ecuación 2.42.

$$H_{s}(\tau_{1}) = H_{0} - \frac{A \cdot \left\{ \begin{array}{l} \alpha_{s} \left[\sigma \cdot \left(0,0552 \cdot T_{a}^{1,5} \right)^{4} + I(\varphi,\psi) \right] \pm \frac{Nu \cdot k_{a}}{L} \cdot \left[T_{s}(\tau) - T_{a} \right] - \right\} \cdot \tau}{\left[-k \cdot \frac{T_{s}(\tau) - T(\xi,\tau)}{\xi} \right] \cdot \tau} \qquad (2.42)$$

Donde:

 $dH/d\tau_1$: velocidad de secado en la superficie de la pila durante; kg/kg·s.

 τ : tiempo de secado para el periodo de velocidad constante; s.

- *λ*: calor latente de vaporización del agua; J/kg.
- L: longitud característica de la superficie de secado; m.

En el periodo de velocidad de secado decreciente se obtienen expresiones análogas a las anteriores (ecuaciones 2.43 y 2.44).

$$-\frac{dH}{d\tau_2} = \frac{A \cdot \left[H(\tau) - H_e\right] \left\{ \begin{bmatrix} \alpha_c \cdot \sigma \cdot \left(0,0552 \cdot T_a^{1,5}\right)^4 + \left(\alpha_s - \vartheta\right) \cdot I(\varphi,\psi) \end{bmatrix} \pm \frac{Nu \cdot k_a}{L} \cdot \left[T_s(\tau) - T_a\right] - \right\}}{\begin{bmatrix} -k \cdot \frac{T_s(\tau) - T(\xi,\tau)}{\xi} \\ \left[\frac{m_0 \cdot (100 - H_0)}{100}\right] \cdot \lambda \cdot \left(H_c - H_e\right) \end{bmatrix}}$$

$$A \cdot [H(\tau) - H_e] \cdot \left\{ \begin{bmatrix} \alpha_c \cdot \sigma \cdot (0,0552 \cdot T_a^{1,5})^4 + \\ + (\alpha_s - \vartheta) \cdot I(\varphi, \psi) \end{bmatrix} \pm \frac{Nu \cdot k_a}{L} \cdot [T_s(\tau) - T_a] - \\ - k \cdot \frac{T_s(\tau) - T(\xi, \tau)}{\xi} \end{bmatrix} \cdot \tau \\ \begin{bmatrix} m_0 \cdot (100 - H_0) \\ 100 \end{bmatrix} \cdot \lambda \cdot (H_c - H_e) \end{bmatrix}$$
(2.44)

Donde:

-*dH*/ $d\tau_2$: velocidad de secado en la superficie de la pila; kg/kg·s.

 H_c y H_e : humedad crítica y de equilibrio de las menas lateríticas; kg/kg.

2.5- Área de exposición y volumen de las pilas

Las ecuaciones para calcular el área de exposición y el volumen de las pilas de minerales con sección transversal triangular, según Retirado y Legrá (2011), son:

$$A = 2 \cdot \int_{0}^{bo/2} [L_{SL} + \pi \cdot x] \cdot \sqrt{1 + [-\tan(\varphi_m)]^2} \, dx$$
(2.45)

$$V = b_o^2 \cdot \frac{1}{4} \cdot \tan(\varphi_m) \cdot L_{SL} + 2\pi \cdot \int_0^{b_o/2} x \cdot \left[\frac{b_o}{2} \cdot \tan(\varphi_m) \cdot \left(1 - \frac{2x}{b_o} \right) \right] dx$$
(2.46)

Donde:

A: área de exposición de la pila; m².

V: volumen de la pila; m^3 .

 L_{SL} : longitud de la superficie lateral de la pila; m.

*b*_o: ancho de la base de la pila; m.

 φ_m : ángulo maximal de la pila; grados sexagesimales.

2.6- Conclusiones del capítulo 2

- La conjugación de diversos aspectos teóricos encontrados en las investigaciones precedentes permitió el establecimiento de los procedimientos y las expresiones matemáticas útiles para la determinación de los parámetros fundamentales del proceso de secado natural de las menas lateríticas.
- Los procedimientos y las expresiones matemáticas establecidas permiten determinar satisfactoriamente los flujos de calor que inciden en el proceso de secado natural, la radiación solar global que incide sobre la superficie de secado de las pilas, la distribución de temperatura y humedad en las pilas de menas lateríticas, la velocidad de secado y la humedad del mineral en la superficie de las pilas, el área de exposición y el volumen de las pilas de minerales con geometría de su sección transversal triangular.

Capítulo 3

Comportamiento de los parámetros fundamentales del proceso de secado natural de

las menas lateríticas

CAPÍTULO 3

COMPORTAMIENTO DE LOS PARÁMETROS FUNDAMENTALES DEL PROCESO DE SECADO NATURAL DE LAS MENAS LATERÍTICAS

3.1- Introducción

El proceso de secado natural de las menas lateríticas en las industrias productoras de níquel cubanas y en particular en la empresa "Comandante Ernesto Che Guevara" se desarrolla bajo diversas condiciones de explotación. El estudio de los parámetros fundamentales del proceso en estas circunstancias resulta de gran interés para la racionalización de la implementación del secado natural, por cuanto permite analizar integralmente el proceso de secado cuando las variables independientes y las condiciones de secado cambian de forma sistemática.

El **objetivo** de este capítulo es establecer el comportamiento de los parámetros fundamentales del proceso objeto de estudio.

3.2- Implementación del procedimiento en una aplicación informática

El procedimiento de cálculo establecido en el capítulo precedente fue implementado en una aplicación informática denominada "SecSolar", la misma fue creada por un grupo multidisciplinario de investigadores del Centro de Estudio de Energía y Tecnología Avanzada de Moa y del Departamento de Ingeniería Mecánica, ambos pertenecientes a la Facultad de Metalurgia y Electromecánica del Instituto Superior Minero Metalúrgico. La referida aplicación informática permite calcular los parámetros fundamentales del proceso de secado natural de las menas lateríticas en las condiciones de explotación de la empresa "Comandante Ernesto Che Guevara" y consta de cinco ventanas principales, ellas son: áreas y volúmenes de pilas; diseño de pilas según radiación solar recibida; cálculo del calor total; dinámica del calor y dinámica del secado. En las Figuras 3.1 y 3.2 se ilustran las ventanas 2 y 5 de la aplicación informática, para un caso de estudio seleccionado. Se escogieron estas dos ventanas por la importancia que tienen en el análisis del proceso investigado.

Áreasy∨i CálculosBás \ño <mark>2011</mark>	olúmena sicos de la 🗲 Mes	es de Pila: Radiación S 10 🚖 🕻	s Diseñ Solar (I) Día 4 💽 I	o de Pilas Día del Año	según Ra	adiación S € Is = [olar Reci 1369.37545	bida Cá 760593	lculo del C ds = -5.4006	alor Total	Dinám	ica del Cal	lor Dinán /h = 0	nica del Sec
Cálculos Bás Latitud 2	sicos de la 1	n Radiación 9 hs = 63	Solar (II) 3.599332033	hc = 63	.599332033	Ws =	5:52	т	d = 11:43		Anginc = 2	6.40066796	6 lo =	1226.5586031
Padiación Solar sobre una Superficie Inclinada I medido 1072 Kt = 0.8739900378 Kb = 0.7297816816 Kd = 0.1442083562 Ib = 835.12000000 Id = 176.87999999 Fi = 5 G = 0 R = 0.17 Rm = 1.03946045038 IG = 1107.33														
Tabla de Cá Hora \ Fi	lculo varia -90	ndo Wh (Co	lumnas) y Fi (Fi -60	las) -45	-30	-15	0	15	30	45	60	75	90	
6	0	0	0	0	0	0	37	38.3208	38.5961	37.8071	36.0076	33.3202	29.928	13
7	0	0	0	0	0	37.5583	38	37.5583	36.0564	33.5966	30.3465	26.5277	22.4004	
8	0	0	0	0	51.1052	53.2999	54	53.2999	51.1052	47.5654	42.9217	37.4907	31.6424	Calcul
9	0	0	0	226.147	242.475	251.975	254	251.975	242.475	226.147	204.103	177.846	149.165	
10	0	0	393.973	436.762	464.779	476.116	470	476.116	464.779	436.762	393.973	339.329	276.553	•
Zálculo de radiación sobre la superficie de una pila de mineral laterítico Optimización de la superficie de una pila atendiendo a la cantidad de radiación solar Ancho de un Corte en cm 10 € Nota: Las dimensiones de la pila se toman de la página anterior Ángulo T entre 20 € y 70 € Ángulo M entre 20 € y 70 € Paso Ángulos T y M 5 € Número de pasos desde -bo/2 hasta bo/2 50 € Imagina anterior Solos iVolument es mayor o Volumen Mínimo 0 Radiación Total en un corte 222640.66 Solos iVolument se mayor o Volumen Mínimo 0 Solo si Volument Mínimo 0 Esclara de radiación Total en la Superficie 300342246.967 Positivos y Trangulares Optimizar la Superficie según Radiación Solar Deptinizar según Densidad de Radiación A T 30 AM 30 Iop 488667411.667969 Deptinizar según Detrinizar según Detrini														
					100%									

Figura 3.1. Ventana denominada "diseño de pilas según radiación solar recibida".

Solar Tecnología para el	Secado Solar: M	4s. C. Yoalbys Retirado M	ediaceja vión Solar Doci	Diseño y programa	ición: Dr. C. Ari	stides A. Legrá	Lobaina	inámica del Seca
H(0,t)=Ho H(L,t)=	=Hs(t) H(y	,0)=Ho=[36.32	Ht = 0.001	122685 (Hyy +	0.0186234	Туу)	K = [0.11
Actualizar Cortes y Se Corte Actual Total 37 I 349 Sección Actual Total 51 51 Vusa Término de la Serie Simular la humedad en corte Image: Corte de Ym 0.097100217 Valor de Y 0.097100217 Valor de H en (µ.t) 31.551785 Valor de H en (µ.t) 33.930034 Disminuye Humedad en un: 2 % Franja de Disminución 0.058386633 60.13 %	cciones 31.5518 31.745 31.9384 32.1318 32.3254 32.713 32.713 32.713 33.069 33.101 33.2951 33.4894 33.6838 34.073 34.2678 34.4677 34.8528 35.048 35.2434 35.4389 35.6345 35.8302 36.026 35.223	Tiempo de Simulación 43200 Tiempo Transcuttido 43200 43200 43200 43200 31.551785 Humedad Mínima en este momento 36.32 Humedad Máxima en este momento 36.32 Humedad Mínima Final 36.32092 Humedad Máxima Final 36.32092 Humedad Máxima Final 36.32092 Humedad Máxima Final 36.32092 Humedad Máxima Final 36.32092 Simular la Humedad en un Corte Dotimización de la superfici Ángulo T entre 20 ♀ Solo tipos Parabólicos F Solo tipos Parabólicos F	El Sector, AT=6 Mostrar Secuencia Gráfica a de una pila atence y 50 💽 Positivos y Triangul ila es mayor o igua a según Volume	19 AM=619 Área de Disminución 3.989130651 29.36 % diendo al volumen de mi Ángulo M entre 2 ares I que Volumen M (nimo n de Secado	Volum en un 0 € y 50 Criterio de Op Criterio de Op Criterio de Op	Altura M en de Disminución Coste 199130651 itimización 	áxima: 4, 8550 Volumen Paso Ángu vmen	1 Total de ción de la Humedad 12459 Jlos T y M 5 🛫
		100%				•		Finaliza

Figura 3.2. Ventana denominada "dinámica del secado".

3.3- Mediciones de las variables que influyen en el secado natural

Se utilizó una pila con sección transversal triangular y una masa inicial de 700 toneladas. Se experimentó con un ángulo de reposo maximal de 61 grados. Las dimensiones de la pila fueron 140 m de largo y 5,49 m de ancho de la base.

3.3.1- Humedad inicial y final de las menas lateríticas

La humedad inicial varía aleatoriamente porque depende de las condiciones climatológicas de la región en el momento de la implementación del proceso y de las características hidrogeológicas del yacimiento en explotación. Se experimentó con los valores que tenían las menas en el momento en que fueron depositadas (valores de referencia). Para la humedad final se realizaron determinaciones en los mismos puntos donde se hicieron las mediciones de la humedad inicial. En ambos casos (humedad inicial y final) se utilizaron los instrumentos que se exponen en la Figuras 1 y 2 del Anexo 1 y los valores de los parámetros se calcularon mediante la expresión 1.1.

3.3.2- Variables meteorológicas

Para el monitoreo de estas variables se empleó el equipo Davis EZ-Mount Groweather que pertenece a la empresa "Comandante Ernesto Che Guevara". El mismo tiene un sistema de adquisición de datos, utilizando un conjunto básico de sensores, que incluye la medición y el registro en computadora, cada una hora, de las variables meteorológicas siguientes: radiación solar, nubosidad, precipitaciones, temperatura del punto de rocío, y la temperatura, humedad relativa, dirección y velocidad del aire. Estas variables tienen un comportamiento aleatorio por lo que no pudieron ser prefijadas para la experimentación, no obstante, sus valores reales fueron considerados en el momento en que se realizaron los cálculos con la aplicación informática utilizada.

3.3.3- Técnica experimental para la medición de la humedad

Para el experimento realizado se removió y homogenizó el material en la pila con la finalidad de obtener valores promedios de humedad. Este parámetro se determinó por el método tradicional de diferencias de pesadas (Martínez-Pinillos, 1997). Se empleó el mismo por la confiabilidad que brinda en los resultados, su sencillez y fácil aplicación. Los resultados obtenidos se muestran en la Tabla 1 del Anexo 1.

3.4- Aplicación del procedimiento de cálculo a una pila industrial

Para desarrollar este epígrafe se calculoaron todos los parámetros del proceso de secado natural para la pila cuyas características se relacionan en la Tabla 1 del Anexo 1. En los subepígrafes siguientes se exponen los resultados y los comentarios correspondientes.

3.4.1- Cálculo de la radiación global que llega a la superficie

Los valores obtenidos para la radiación global que incide sobre la superficie de secado de la pila se relacionan en la Tabla 1 del Anexo 2, los mismos fueron calculados empleando la expresión 2.19, la cual fue establecida para las condiciones específicas del proceso investigado. Al graficar los resultados, en la Figura 3.3, se observa que la radiación solar medida sobre superficie horizontal, en general difiere de un 3 a un 5 % de la radiación global que incide sobre los taludes de las pilas, lo anterior se debe a que la superficie de secado de la pila está inclinada, en este caso el ángulo de inclinación es de 61 grados sexagesimales. Los criterios anteriores permiten inferir la importancia que tiene, en el diseño de la tecnología de secado natural, la evaluación rigurosa de la energía solar disponible.

En la referida figura se observa además que en la sección tarde (a partir de las 12 horas) la radiación es más intensa y por tanto el secado del talud oeste será más rápido

que en el este, por tanto el proceso de remoción de la masa mineral se debe realizar en el sentido este-oeste, lo anterior es congruente con el procedimiento de remoción propuesto por Estenoz (2009), el cual tiene como objetivo desarrollar un método que posibilite aprovechar al máximo la energía solar, el calor natural y la energía eólica en el proceso de secado para obtener la mayor productividad del secado por unidad de superficie, mediante la remoción periódica de las pilas y el control de sus parámetros, en tal forma que se pueda adecuar a las variaciones climáticas y las irregularidades en los regímenes de precipitación que caracterizan a la región de Moa.

3.4.2- Cálculo del calor total que llega a la superficie

Debido a que el proceso objeto de estudio se desarrolla a la intemperie, la superficie de secado de las pilas de minerales intercambia calor con los alrededores por convección y radiación. El calor total disponible para el secado lo constituye la suma o la diferencia (según corresponda) de estos dos flujos de calor.

Figura 3.4. Comportamiento del flujo de calor por convección.

En las Tablas 2 y 3 del Anexo 2 se relacionan los valores calculados (con las ecuaciones 2.21 y 2.1) para los flujos de calor transferidos por convección y radiación. Al valorar sus comportamientos (Figuras 3.4 y 3.5) se infiere que estos están determinados por los regímenes de radiación solar existentes, lo anterior explica el hecho de que las tendencias globales de las curvas representadas en las Figuras 3.3 y

3.5 sean similares. Además, se aprecia claramente que el flujo de calor predominante y por tanto más influyente en el secado natural es el de radiación. Sin embargo, si se comparan los valores obtenidos para la radiación solar (Figura 3.3) y para el flujo de calor por radiación (Figura 3.5), se observa una reducción del segundo respecto al primero, lo anterior es consecuencia de la incidencia que tienen la absorvidad solar del mineral, la inclinación de la superficie de secado y las condiciones atmosféricas predominantes en la región durante la implementación del proceso.

Figura 3.5. Comportamiento del flujo de calor por radiación.

3.4.3- Cálculo de la distribución de temperatura

Durante el proceso de secado solar natural del mineral la superficie de secado recibe calor por convección y radiación, una parte del calor recibido se emplea en evaporar la humedad no estructural y el resto en variar la energía interna del material mientras aumenta su temperatura.

La distribución de temperatura que experimentan las menas lateríticas durante el secado natural se calcula mediante la ecuación 2.36. Los resultados obtenidos para diferentes espesores de secado se relacionan en las Tablas 4 y 5 del Anexo 2.

Al analizar los comportamientos (Figura 3.6) se observa que la superficie de secado de la pila (donde la altura h = 4,855 m) incrementa su temperatura apreciablemente a partir de las 9 horas (tres horas de secado) y como es lógico los mayores valores se obtienen en el horario comprendido entre las 11 y las 15 horas, donde oscilan entre los 79,135 y 90,391 °C (ver Tabla 4 y 5 del Anexo 2). Sin embargo, para las restantes alturas consideradas se comporta aproximadamente constante e igual al valor inicial (30 °C), excepto para las alturas comprendidas entre los 1,090 y 4,855 m que para el tiempo de secado igual a 12 horas (a las 18 horas) las temperaturas mantienen valores entre 34,013 y 46,621 °C.

Figura 3.6. Comportamiento de la temperatura del mineral desde la base hasta la superficie de la pila de minerales.

Los comportamientos mostrados en la figura anterior (3.6) indican que el mineral laterítico es un material mal conductor del calor, por cuanto los cambios significativos que se producen en la temperatura superficial de la pila no inciden en la capa de mineral ubicada a 0,297 m (29,7 cm).

Con el objetivo de determinar el espesor al cual se produce el cambio en la temperatura del mineral en el interior de la pila de graficaron los valores de temperatura para las alturas más cercanas a la superficie de la pila (Figura 3.7). Como se aprecia para el valor de la altura h = 4,756 m se produce un incremento significativo de la temperatura del material, sin embargo para la altura siguiente (h = 4,657 m) los valores se mantienen prácticamente constantes, por tanto se puede concluir que para las condiciones de secado natural analizadas la conducción del calor se produce en una capa de material de espesor 0,099 m (9,9 cm).

Figura 3.7. Comportamiento de la temperatura en función de espesor de secado.

3.4.4- Cálculo de la distribución de humedad

Los valores de la simulación numérica obtenidos para la humedad del mineral se relacionan en las Tablas 6 y 7 del Anexo 2. En general se observan pequeñas reducciones de la humedad del material que no exceden el 5 % para un tiempo de secado de 12 horas (Figuras 3.8 y 3.9) estos resultados se corresponden con la poca cantidad de energía disponible para el secado. Para las capas de mineral ubicadas entre 0 y 2,081 m se obtienen reducciones en el orden del 2 %, mientras que en las capas cercanas a la superficie (desde h = 4,062 m hasta h = 4,855 m) los niveles de reducción de la humedad oscilan entre 4 y 5 %. Sin embargo, como promedio en la pila se redujo la humedad en 0,889 %. Este valor indica que para obtener niveles de reducción de la humedad entre 6 y 7 % en la pila, la misma se debe someter al proceso de secado natural por un tiempo de 7 días (1 semana) si las condiciones climatológicas se mantienen similares a las utilizadas en la simulación computacional. De lo contrario puede suceder que se requiera de más o menos tiempo (según sea el caso) para lograr la misma reducción de humedad en el material.

Resultados similares a los expuestos en este epígrafe han sidos obtenidos en la implementación práctica y las pruebas experimentales de secado que constan en las

investigaciones precedentes consultadas (Estenoz *et al.*, 2005, 2006, 2007a; Retirado, 2007; Retirado *et al.*, 2007; 2008, 2009, 2010; Estenoz, 2009).

Figura 3.8. Comportamiento de la humedad del mineral desde la base hasta la superficie de la pila de minerales.

En la Figura 3.9 se graficaron los valores de humedad obtenidos para las mismas condiciones de secado en la que se obtuvo la distribución de temperatura que se muestra en la Figura 3.7. Sin embargo, al analizar detalladamente ambas figuras y su interrelación se aprecia que en el caso de la temperatura los cambios significativos se producen en la capa que está a 9,9 cm de la superficie de la pila, pero en el caso de la humedad sucede diferente y se obtienen reducciones de la humedad, que resultan significativas para el proceso, hasta las capas que se encuentran a una distancia de 49,5 cm. Estos comportamientos confirman que durante el secado natural del mineral la reducción de la humedad. En el caso del primero actúa fundamentalmente en las capas cercanas a la superficie como resultado del calentamiento del material en esa zona y el segundo actúa en las capas interiores como resultado de la diferencia de concentración de humedad existente entre las diferentes zonas de la pila de minerales.

Figura 3.9. Comportamiento de la humedad en función de espesor de secado.

3.4.5- Cálculo de la velocidad de secado

La velocidad de secado tiene un comportamiento oscilatorio que se corresponde con las oscilaciones de la radiación solar y la temperatura del material en la superficie de secado de la pila. De acuerdo con la Figura 3.10 entre las 7 y las 8 horas su valor es prácticamente insignificante, pero con tendencia creciente hasta las 12 horas (ver la Tabla 8 del Anexo 2).

En la referida Figura (3.10) se observa claramente que el horario donde se intensifica el proceso de secado natural es el comprendido entre las 10 y las 15 horas, pero en general en la sección de la tarde (posterior a las 12 horas) los valores de la velocidad son más elevados que en la mañana.

Estos resultados se corresponden con los obtenidos en las simulaciones numéricas desarrolladas para la pila del caso de estudio que se analiza (Figura 3.11). Nótese que en la Figura 3.10 la velocidad de secado es mayor en las capas superiores por estar en contacto directo con las fuentes de calor (el sol y el aire), de igual manera se refleja en las simulaciones numéricas mostradas en la Figura 3.11 donde se aprecia (mediante el cambio en la intensidad del color) que en la superficie de la pila el mineral tiene menos contenido de humedad que en el interior de la misma.

Figura 3.10. Comportamiento de la velocidad de secado desde la base hasta la superficie de la pila de minerales.

Figura 3.11. Simulación numérica de la distribución de humedad en la pila de menas lateríticas (de sección transversal triangular) expuesta a secado natural.

3.4.6- Cálculo del área de exposición y el volumen de la pila

En las Tablas 9 y 10 del Anexo 2 se relacionan los valores obtenidos para el área de exposición y el volumen de la pila, en correspondencia con la variación de los ángulos maximal y tangencial, como se aprecia las ecuaciones establecidas en el capítulo precedente (la 2.45 para el área y la 2.46 para el volumen) permiten determinar los mencionados parámetros para las pilas de menas lateríticas con sección transversal triangular.

Sobre el cálculo del área y el volumen resulta interesante destacar que al utilizar las ecuaciones propuestas en la presente investigación solo se requiere conocer las dimensiones (largo y ancho) de la superficie horizontal disponible para el secado natural, dato que siempre está disponible y los ángulos maximal (φ_m) y tangencial (φ_t) de la pila de minerales, los cuales se pueden determinar conociendo la granulometría y humedad del material, estas propiedades físicas de las menas lateríticas igualmente son conocidas y ampliamente dominadas por los obreros de las empresas.

Los comportamientos mostrados por los valores expuestos en las Tablas 9 y 10 del Anexo 2 indican que el área de exposición y el volumen de las pilas aumentan en la medida en que se incrementan los ángulos maximal y tangencial. Sin embargo, aunque las tendencias al crecimiento de los valores en ambos casos son similares, se observa que la diferencia entre los valores extremos (máximo y mínimo) es más acentuada en el caso del volumen. De lo anterior se infiere que al variar los ángulos se pueden obtener incrementos en el volumen de las pilas que son superiores a los incrementos que se obtienen para el área de exposición.

Aunque es importante valorar las tendencias al crecimiento que reflejan el área de exposición y el volumen de la pila, durante la implementación práctica del proceso de secado natural se debe considerar que no necesariamente se obtienen eficiencias racionales en las pilas de mayor área y volumen, sino en aquellas en que los procesos de transferencia de calor y masa se intensifican como resultado de una mayor captación de la radiación solar, pero que a la vez su volumen sea suficientemente grande para satisfacer una productividad predeterminada por las empresas. Estos criterios deben ser considerados en la optimización del proceso de secado natural.

3.5- Beneficios económicos derivados de la implementación del secado natural de las menas lateríticas

La implementación a escala industrial del proceso de secado natural de las menas lateríticas genera beneficios económicos en las empresas productoras de níquel cubanas (Estenoz, 2007a; Estenoz *et al.*, 2007c; Retirado, 2007, 2012; Vinardell, 2011). En este epígrafe se exponen brevemente algunos de los beneficios económicos obtenidos en las empresas seleccionadas. El impacto ambiental asociado al proceso se valora en el epígrafe siguiente.

3.5.1- Beneficios obtenidos en la empresa Ernesto Che Guevara

Durante la prueba de secado realizada en la empresa la productividad promedio de los secaderos durante los días en que se alimentó el mineral de los depósitos de secado natural se incrementó hasta 110,2 t/h, mientras que en el período en que se alimentó el mineral en la forma tradicional (sin secado natural) la productividad promedio fue de 97,2 t/h.

En la Tabla 3.1 se observa que en los secaderos convencionales durante el trabajo con el mineral secado al Sol todos los turnos de trabajo tuvieron productividades mayores que 100 t/h, alcanzándose en el 53 % de los turnos productividades superiores a las 106 t/h. Por otra parte, durante el procesamiento del material sin secado natural sólo en el 41 % de los turnos se lograron productividades superiores a 100 t/h.

	11000	ouvidud	y	concurre	uu	poliolo	5 u0	100	000000000	auranto	01
	proce	samiento	o de	las mena	s late	eríticas s	sin y c	on se	ecado natura	al.	
Productividad	d de	Sin seca	do r	natural (H =	38.10)%)	Cor	seca	do natural (H	= 35.27 %	

Tabla 31 Productividad y consumo de petróleo de los secaderos durante el

Productividad de	Sin s	seca	<u>ado natural (H</u>	= 38,10 %)	Con secado natural (H = 35,27 %)						
los secaderos	Turnos				Tu	rnos					
durante el	de		Mineral	Petróleo	de		Mineral	Petróleo			
secado	trabajo		procesado	consumido	trabajo		procesado	consumido			
(t/h)	No. %	, 0	(t)	(t)	No.	%	(t)	(t)			
Menos de 90	4 14 9 751			328	Resultados obtenidos con la						
91-95	8 28	3	22 067	711	alimentación del mir			neral con			
96-100	5 17		15 005	468	secado nat			ıral			
101-105	10 34	4	29 041	823	7	47	20 717	613			
106-110	2 7	7	6 725	191	4	27	12 057	349			
111-115	R	esu	ltados obtenido	os con la	2	13	5 869	176			
116-120	alime	enta	ción del minera	al tradicional	2	13	5 555	154			
Total	29 100 82 589		2 521	15	100	44 198	1 292				

Fuente: Estenoz et al., 2007c.

A partir de la Tabla 3.1 se infiere que en los 29 turnos de trabajo donde se alimentó el material sin secado natural se procesaron 82 589 toneladas de mineral y se consumieron 2 521 toneladas de petróleo para un índice de 32,760 t de mineral/t de petróleo. Cuando se aplica el secado natural se procesaron 44 198 toneladas de mineral en 15 turnos de trabajo y se consumieron 1 292 toneladas de petróleo, para un índice de 34,209 t de mineral/t de petróleo, o sea, se alimentaron a los secaderos 1,449 toneladas de mineral procesado más que sin secado natural. De lo anterior se infiere que en el caso del secado convencional cuando se procesa el material que ha sido secado al Sol se consumen 1,292 kg de petróleo menos por toneladas de mineral alimentado a los secaderos y por tanto se obtiene un efecto económico por concepto de ahorro de combustible.

3.6- Impacto ambiental asociado al secado natural del mineral

El secado natural es uno de los procesos mineros por los que transitan las menas lateríticas, el mismo daña poco al medio ambiente debido a que utiliza las energías solar térmica y eólica como fuentes de secado. Con la implementación del secado natural del material se reducen las emanaciones de gases productos de la combustión liberados por los secaderos convencionales, debido a que el tiempo de permanencia del mineral dentro de los mismos se reduce y el consumo específico de combustible decrece considerablemente. Teniendo en cuenta que estos gases son perjudiciales para la vida de los seres humanos y las plantas se infiere que la reducción de las emisiones mejora la calidad del aire en el entorno laboral y en las comunidades mineras cercanas a la empresa, lo que repercute en la disminución de los niveles de contaminación de las aguas y en la prolongación de la vida de los ecosistemas de los territorios aledaños.

No obstante, durante el desarrollo del proceso existe afectación al medio ambiente y los trabajadores del patio de secado provocada por las emanaciones de polvo y las emisiones de ruido que se generan en el proceso de carga, descarga y remoción de las menas lateríticas, por esta razón se exponen brevemente las principales afectaciones causadas por ambas fuentes contaminantes.

3.6.1- Afectaciones provocadas por el polvo

Entre los efectos que producen sobre los materiales se encuentran la abrasión realizada por aquella partícula de mayor diámetro y el ataque químico que puede realizarse directamente por las partículas o por los gases en los que estas viajan.

Los efectos que produce sobre la vegetación pueden considerarse muy pequeños y prácticamente inexistentes. Solo pueden cifrarse como peligrosos aquellos que se derivan para zonas muy próximas a los puntos de producción de partículas en grandes cantidades.

Sin embargo, cuando se habla del organismo humano, la situación se torna más preocupante, ya que lo afecta directamente en mayor o menor medida. Los contaminantes penetran en el organismo fundamentalmente por inhalación de polvo en el aire por las vías respiratorias y mediante la absorción de polvo a través de la piel. En la primera, las partículas entran al cuerpo humano a través del sistema respiratorio y el efecto que se produce depende de su tamaño, composición química, densidad, superficie específica, entre otras características. En la segunda, las partículas de diámetro superiores a 5µm quedan retenidas en la cavidad nasal y también pueden quedar atrapadas por la mucosa que tapiza la tráquea. Las partículas con diámetros comprendidos entre 0,5 y 5µm son capaces de penetrar hasta el sistema respiratorio inferior depositándose en los bronquios. De aquí que en la mayoría de los casos sean eliminados al cabo de algunas horas por respiración. Pero la situación más preocupante corresponde a las partículas menores de 0,5µm, ya que se ha estimado que más del 50 % de las partículas de 0,01 a 0,1 μ m que penetran en los alvéolos se depositan allí, donde es difícil eliminarlos por carecer de cilios y mucosas, pudiendo permanecer durante meses e incluso durante años degradando la salud del hombre.

3.6.2- Afectaciones provocadas por el ruido

Entre los impactos negativos del ruido se encuentran la pérdida de la audición, interferencia de la comunicación oral, molestias y disminución de la capacidad de trabajo. Se ha demostrado que la exposición prolongada a altos niveles de ruido puede provocar la pérdida total de la audición. Otras alteraciones del oído producto del ruido son: el tapamiento del canal auditivo y la ruptura de la membrana timpánica. El ruido

también produce en el sistema neuro-vegetativo una serie de modificaciones funcionales que son reacciones de defensa del organismo frente a una agresión externa, por ejemplo: la elevación de la presión arterial, aceleración del ritmo cardiaco y de los movimientos respiratorios, tensión muscular y descarga de hormonas en sangre. Esto ocurre sobre todo cuando el ruido es muy intenso, de carácter impulsivo y el que escucha no está preparado para ello. Los niveles de ruido altos están considerados como factores de riesgo para la vida de los seres humanos ya que, por lo general, desencadenan en una enfermedad cardiovascular.

3.7- Conclusiones del capítulo 3

- El análisis del proceso evidenció que durante el secado natural de las menas lateríticas se producen cambios en la temperatura y la humedad del mineral hasta las capas que están separadas alrededor de 10 y 50 cm de la superficie de la pila, respectivamente. De lo anterior se infiere que el transporte de la humedad en la pila de mineral se produce fundamentalmente por la influencia del gradiente de temperatura en las capas superficiales y del gradiente de concentración de humedad en las capas interiores.
- Existe correspondencia entre los resultados obtenidos en las simulaciones numéricas desarrolladas para la pila de menas lateríticas del caso de estudio analizado y el proceso de secado natural implementado en las empresas productoras de níquel cubanas. En ambos casos la temperatura, la reducción de humedad del material y la velocidad de secado son mayores en las capas superficiales de las pilas de minerales.

Conclusiones Generales y Recomendaciones

CONCLUSIONES GENERALES

- Se determinaron los parámetros fundamentales del proceso de secado natural de las menas lateríticas, en las condiciones de explotación de la empresa "Comandante Ernesto Che Guevara", y se obtuvieron los siguientes resultados:
 - La radiación solar global que incide sobre la superficie de secado de las pilas de minerales [I(φ,ψ)] osciló entre los 865 y 915 W/m² para el horario comprendido entre las 11 y las 14 horas, su comportamiento fue asimétrico respecto al medio día solar, obteniéndose mayores valores en la sección de la tarde.
 - ✓ Los flujos de calor transferidos por radiación (Q_{Rad}) y convección (Q_{Conv}) alcanzaron valores máximos iguales a 675,30 y 77,91 W/m², respectivamente.
 - Los gradientes generados durante el proceso provocaron cambios en la temperatura [T(y,τ)] y la humedad [H(y,τ)] del material hasta las capas que se encuentran a 10 y 50 cm de la superficie de secado y como promedio en la pila se redujo la humedad en 0,889 %, para un tiempo de secado de 12 horas.
 - La velocidad de secado (dH/dτ) ascendió a 0,054 %/h y la humedad del material en la superficie de la pila [Hs(τ)] osciló entre 36 y 31,20 % para el horario comprendido entre las 6 y las 18 horas del día.
 - ✓ El área de exposición (A) de las pilas con sección transversal triangular osciló entre 773,8 y 1 524,2 m². Mientras el volumen (V) varió entre 182,53 y 1 793 m³, para una oscilación de los ángulos maximal y tangencial entre 10 y 60 grados.
- Con la implementación del secado natural se redujo el contenido de humedad del material en 2,83 %, y en consecuencia:
 - Se incrementó la productividad promedio de los secaderos térmicos convencionales en 13 t/h y se redujo el consumo específico de combustible de estos equipos en 1,292 kg de petróleo/t de menas lateríticas procesadas.
 - ✓ Se redujeron las emanaciones de gases producto de la combustión del petróleo.
 - Se incrementaron las emisiones de polvo debido al desmenuzamiento que sufre el material durante el secado natural y aumentaron las emisiones de ruido provocadas por el trabajo de los equipos empleados en el transporte del material, la formación de las pilas y la remoción de las menas lateríticas.

RECOMENDACIONES

- Determinar los parámetros fundamentales del proceso de secado natural para pilas de menas lateríticas que tengan la sección transversal diferente a la triangular.
- Estudiar la captación de la radiación solar en pilas de minerales asimétricas y en pilas que tengan la superficie de secado orientada arbitrariamente respecto al eje Norte-Sur.
- Utilizar el Trabajo de Diploma como material de consulta en las asignaturas Termodinámica Técnica, Transferencia de calor y Fenómenos de Transporte.

Referencias Bibliográficas

REFERENCIAS BIBLIOGRÁFICAS

- 1. Abdel-Rehim, Z.; Z. Nagib. Solar drying of Bagasse Pulp. *Journal of Applied Sciences Research*, 2007, 3(4): 300-306.
- Alaiz, E. Energía solar. Cálculo y diseño de instalaciones. Escuela Técnica Superior de Ingenieros Industriales, Madrid, 1981.
- Bergues, C.; J. Abdala; P. Griñán; S. Fonseca; E. Pantoja; Z. Acosta; G. Hernández. Concepción y evaluación de un secador solar de granos con cubierta de polietileno. *Tecnología Química*, 2003a, 23(1): 68-73.
- Bergues, C.; O. Fabar; A. Martínez. Minisecador solar para la agricultura urbana "MINISOL". Concepción, evaluación y caracterización de sus cambios tecnológicos. *Tecnología Química*, 2006, 26(2): 37-48.
- Bergues, C.; P. Griñán; J. Abdala; S. Fonseca. Concepción y pruebas de un secador solar de plantas medicinales con cubierta de polietileno. Una experiencia cubana. En: Primera Convención Internacional de Energía y Medio Ambiente. Santiago de Cuba. 2003b.
- 6. Blanco, J.; G. Llorente. Informe técnico sobre investigaciones ingeniero-geológicas e hidrogeológicas de la Base Minera Punta Gorda. Holguín: INRH, 2004, 54 p.
- Boizán, M. Macrocinética del secado de Bagazo. Santiago de Cuba: Ediciones ISJAM, 1991. 145p.
- 8. Bukingham, E. The movement of soil moisture. US Dep. Agr. Bull, 38, 1907.
- Carmenate, J.; R. Rodríguez; R. Linares. Interfaz agua-aire en los suelos lateríticos de la región de Moa. En: 3ra Convención cubana de ciencias de la Tierra. La Habana. 2009.
- 10. Corvalan, R.; M. Horn. Ingeniería del secado solar. CYTED-D, 1995.
- De Miguel, C. Cálculos del drenaje y efecto económico en yacimientos hierrocobalto-niquelíferos en lateritas con ejemplo del yacimiento Punta Gorda en Moa, Cuba. En: Memorias del III Congreso Cubano de Minería. La Habana. 2009.
- De Miguel, C. Influencia de procesos hidrogeológicos en la formación y posterior enriquecimiento mineral de yacimientos cobalto-niquelíferos en lateritas. En: Memorias del II Congreso Cubano de Minería. La Habana. 2007.

- **13.** De Miguel, C. Informe conclusivo de las investigaciones hidrogeológicas e ingeniero geológicas del yacimiento Punta Gorda. Moa: ISMM, 2004, 38 p.
- 14. Diagnóstico de la empresa "Ernesto Che Guevara". Informe técnico, 2010. 38 p.
- **15.** Duffie, J.; W. Beckman. *Solar energy thermal processes*, New York: Wiely Intitution, 1980, 820 p.
- **16.** Duffie, J.; W. Beckman. *Solar engineering of thermal processes*. New York: Wiley Institution, 1991, 919 p.
- 17. Espinosa, M.; N. Pérez. Evaluación del estado técnico de las muestras extraídas y depositadas en áreas de la mina de la empresa Ferroníquel Minera, para los trabajos de secado solar y homogenización. Informe de investigación, 2010a. 30 p.
- Espinosa, M.; N. Pérez. Resultados obtenidos en pruebas de secado solar realizadas por el Centro de Desarrollo de Investigaciones del Níquel a la empresa Ernesto Che Guevara. Informe de investigación, 2010b. 20 p.
- Estenoz, S.; A. Alderí; A. Reyes; Y. Lovaina; H. Pinto. Uso racional de los recursos con la explotación de los depósitos de estabilización de la calidad en la empresa Ernesto Che Guevara. En: Il Congreso Cubano de Minería. La Habana. 2007b.
- 20. Estenoz, S.; A. Alderí; N. Batista; A. Donatién; N. Pérez. Aplicación del secado solar y la homogeneización en la industria niquelífera Comandante Ernesto Che Guevara. En: Il Congreso Cubano de Minería. La Habana. 2007c.
- Estenoz S.; A. Alderí; N. Batista; A. Donatién. Resultados en la industria minera del secado solar y la homogeneización de minerales en pilas a la intemperie. Santiago de Cuba. En: Memorias en CD del Evento CIEMA 05, 2005, Noviembre 8-11, ISBN 959-2007-198-5.
- Estenoz, S. Sistema integral de explotación minera para desarrollo sostenible de recursos naturales y su procesamiento tecnológico. Casos de estudio. En: Memorias del III Congreso Cubano de Minería. La Habana. 2009.
- Estenoz, S.; N. Pérez; I. Ramírez. Secado solar y homogeneización de minerales a la intemperie en la industria cubana del níquel. En: Memorias del evento CUBASOLAR. Villa Clara. 2006.

- Franzen, K.; H. Liang; B. Litchfield; M. Okos. Desing and Control of Energy Efficient Drying Processes with Specific Reference to Foods. Vol. 1 Literature Review DOE/ID/12608-2, 1987.
- 25. Henry P. Difusión in absorbing media. Proc. R. Soc. London, 1939, 171a: 215-241.
- Hernández, J.; P. Quinto. Aplicación del modelo de Kowalski al secado de Madera de Abeto. En: VII Congreso Nacional de Ingeniería Electromecánica y de Sistemas. México DF. Noviembre, 2003a.
- 27. Hernández, J.; P. Quinto. Secado de medios porosos: una revisión a las teorías actualmente en uso. *Científica*, 2005, 9(2): 63-71.
- Incropera, F.; D. De Witt. Fundamentals of Heat and Mass Transfer. La Habana: Editorial Pueblo y Educación, 2003. 3 t.
- Jiménez, H. Modelamiento matemático de los procesos de transferencia de momentum, calor y masa en medios porosos. Tesis Doctoral. Universidad Autónoma Metropolitana: División de Ciencias Básicas e Ingeniería, 1999. 289 h.
- **30.** Joshi, C.; M. Gewali; R. Bhandari. Performance of solar drying systems: A Case Study of Nepal. *International Energy Journal*, 2004, 85(1): 53-57.
- 31. Kasatkin, A. Operaciones básicas y aparatos en la tecnología química. La Habana:
 Editorial Pueblo y Educación, 1987. 2 t.
- 32. Keey, R. Theoretical Foundations of Drying Technology. *Advances in Drying*, Vol. 1. Hemisphere publishing Corp. 1980.
- Kowalski, S.; C. Strumillo. Moisture transport, thermodynamics, and boundary conditions in porous materials in presence of mechanical stresses. *Chemical Engineering Science*, 1997, 52(7):1141-1150.
- **34.** Kowalski, S.; C. Strumillo. Thermomechanical approach to shrinking and cracking phenomena in drying. *Drying technology*, 2001, 19(5): 731-765.
- **35.** Krischer, O. *Die wissenschaftlichen Grundlagen der Trocknungstechnick*. Chap. IX, Springer Berlin, 1963.
- 36. Lewis, W. The drying of solids materials. J. Ind. Eng. Chem, 1921. 13: 427-432.
- **37.** Luboschik, U.; P. Schalajda. *Diseño, construcción y resultados de seguimiento de dos secaderos solares de tamaño medio en Alemania y España usando*

convección natural, Tecnical Report PSA - CIEMAT, 1990.

- **38.** Likov A. Application of irreversible thermodynamic methods to investigation of heat and mass transfer. *Journal of Heat and Mass Transfer*, 1966, 9: 139-152.
- **39.** Martínez-Pinillos, E. Diseño y ensayo de un secador solar para madera. *Madera y Bosques*, 1997, 3(2): 13-28.
- **40.** Montero, I. *Modelado y construcción de un secadero solar híbrido para residuos biomásicos.* Tesis Doctoral. Badajoz, 2005. 262h.
- **41.** Montoya, J.; C. Orozco. Secado solar y convencional de la Guadua Angustifolia. *Scientia et Technica,* 2005, 11(27):133-138.
- 42. Montoya, J.; E. Jiménez. Determinación de la curva de secado al aire libre mediante modelación matemática y experimental de la Guadua Angustifolia Kunth. *Scientia et Technica*, 2006, 12(30): 415-419.
- Pacheco, P; J. Suárez; E. Juliá. Secado solar de maderas. Perspectiva teórica. *Tecnología Química*, 2006, 26(3): 71-75.
- 44. Patiño-Palacios, G. Modelamiento matemático de flujo convectivo en medios porosos. Tesis de Maestría. Instituto Tecnológico de Celaya, 1996.
- **45.** Philip, J.; A. De Vries. Moisture movement in porous materials under temperature gradients. *Trans. Am. Geophys Union,* 1957, 38(2): 222-232.
- **46.** Restrepo, A.; J. Burbano. Disponibilidad térmica solar y su aplicación en el secado de granos. *Scientia et Técnica*, 2005, 11(27): 127-132.
- 47. Retirado, Y.; A. Legrá. Modelación matemática del área de exposición y del volumen de las pilas de menas lateríticas expuestas a secado solar natural. *Minería y Geología,* 2011, 27(2): 84-108.
- **48.** Retirado, Y. *Comportamiento de la humedad durante el secado solar del mineral laterítico*. Tesis de Maestría. ISMM. 2007. 71h.
- **49.** Retirado, Y. *Modelación matemática del proceso de secado natural de las menas lateríticas.* Tesis Doctoral. ISMM. 2012. 121h.
- **50.** Retirado, Y.; E. Góngora; E. Torres; A. Rojas. Comportamiento de la humedad en el secado solar del mineral laterítico. *Minería y Geología*, 2007, 23(3): 1-19.
- 51. Retirado, Y.; E. Góngora; E. Torres; M. Lamorú; B. Leyva; D. García. Transferencia

de calor en el secado solar a la intemperie de menas lateríticas ferroniquelíferas. *Minería y Geología*, 2011, 27(1): 1-21.

- 52. Retirado, Y.; E. Góngora; E. Torres; N. Hernández. Comportamiento de la adherencia en menas lateríticas sometidas a secado solar natural. *Minería y Geología*, 2009, 25(1): 1-11.
- **53.** Retirado, Y. Estudio experimental del proceso de secado solar de las menas lateríticas empleadas en la industria del níquel en Moa. En: Forum tecnológico especial de energía. Moa. 2010, ISBN: 978-959-16-1216-8.
- Strumillo, C.; P. Jones; Z. Romuald. *Energy Aspects of Drying*. In: Mujumdar AS, ed. Handbook of Industrial Drying, 2nd ed. New York, Marcel Dekker, 1995.
- **55.** Thorpe, G.; S. Whitaker. Local mass and thermal equilibria in ventilated Grain Bulks. The development of heat and mass conservation equations (Part I). *Journal of Stored Products Research*, 1992, 28(1): 15-27.
- **56.** Tiwari, G. Solar Energy. Fundamentals, Design, Modelling and Applications. Alpha Science International, India, 2002.
- **57.** Tiwari, G.; B. Sarkar. Experimental study of greenhouse Prawn drying under natural convection. Agricultural Engineering International, 2006, 8(16): 1-9.
- **58.** Vinardell, J. Implementación del secado solar natural de las menas lateríticas en las empresas niquelíferas cubanas. Tesis de Maestría. ISMM. 2011. 63 h.
- **59.** Whitaker, S. Simultaneous heat, mass and momentum transfer and theory of drying. *Heat Transfer*, 1977, 13 (2): 119-203.
- **60.** Whitaker, S.; W. Chou. Drying granular porous media (Theory and experiment). *Drying Technology*, 1983, 1(1): 3-33.

ANEXO 1 INSTRUMENTOS UTILIZADOS EN LA DETERMINACIÓN DE LA HUMEDAD DE LAS MENAS LATERÍTICAS

Figura 1. Balanza digital utilizada para el pesaje de las muestras de menas lateríticas. **Denominación:** Balanza romana. Rango de medición: 0 a 100 kg. Error: 0,058 kg

Figura 2. Estufa empleada para el secado de las muestras de menas lateríticas.
Pila	Pila de menas lateríticas, sus características se relacionan a continuación: Masa = 700 t; L _{SI} = 140 m; b_0 = 5.49 m; ω_m = 61°; Tipo de sección transversal: triangular														
Masa =	$H_{0(P) Exp.}$	m; b _o = 5,49 m; φ _n H_{F(P)Exp} .	\mathbf{D} = 61°; Tipo	H _{0(P) Exp.}	$\mathbf{H}_{F(P)Exp.}$										
(No.)	(%)	(%)	(No.)	(%)	(%)										
1	(NO.) (%) (%) (%) (%) 1 36,32 30,61 8 33,05 27,50														
2	36,61	33,89	9	33,96	27,42										
3	35,50	32,11	10	34,94	30,85										
4	42,77	36,56	11	32,22	27,75										
5	39,80	34,68	12	22,74	18,38										
6	34,23	30,54	13	29,02	22,67										
7	36,99	33,93	14	25,07	19,13										

 Tabla 1. Resultados experimentales obtenidos para la humedad de las menas lateríticas.

ANEXO 2

VALORES DE LOS PARÁMETROS CALCULADOS PARA LA PILA DE MINERAL SELECCIONADA (PILA DE 700 TONELADAS)

No.	I _G -6	I _G -7	I _G -8	I _G -9	I _G -10	I _G -11	I _G -12	I _G -13	I _G -14	I _G -15	I _G -16	I _G -17	I _G -18
1	35,8	30,1	42,5	202,4	390,6	804,4	1000,8	944,15	0,00	0,00	0,00	0,00	0,00
2	35,8	30,1	42,5	202,4	390,6	804,4	1000,8	944,15	0,00	0,00	0,00	0,00	0,00
												-	
•									•				
•	•		•	•	•	•		•	•	•		-	
25	35,8	30,1	42,5	202,4	390,6	804,4	1000,8	944,15	0,00	0,00	0,00	0,00	0,00
26	37,0	38,0	54,0	254,0	470,0	865,0	1072,0	1008,0	915,0	779,0	662,0	460,0	217,0
27	0,00	0,00	0,00	0,00	0,00	804,4	1000,8	944,15	866,4	755,2	676,7	555,4	403,3
												-	
-		-											
-		-											
50	0,00	0,00	0,00	0,00	0,00	804,4	1000,8	944,15	866,4	755,2	676,7	555,4	403,3
51	0,00	0,00	0,00	0,00	0,00	804,4	1000,8	944,15	866,4	755,2	676,7	555,4	403,3

 Tabla 1. Valores de radiación global calculados.

Tabla 2. Valores de los flujos de calor por convección para las 51 secciones del corte realizado.

No.	C-6	C-7	C-8	C-9	C-10	C-11	C-12	C-13	C-14	C-15	C-16	C-17	C-18
1	10,2	9,03	11,62	3,18	6,24	12,94	15,66	14,72	0,00	0,00	0,00	0,00	0,00
2	10,2	9,03	11,6	3,18	6,24	12,94	15,66	14,72	0,00	0,00	0,00	0,00	0,00

Continuación de la Tabla 2.

No.	C-6	C-7	C-8	C-9	C-10	C-11	C-12	C-13	C-14	C-15	C-16	C-17	C-18
•	•	•			•	•	•	•	•	•	•	•	
25	10,2	9,03	11,6	3,18	6,24	12,94	15,66	14,72	0,00	0,00	0,00	0,00	0,00
26	10,49	10,70	13,77	37,37	53,19	70,66	77,91	76,37	73,64	68,87	63,18	52,66	34,55
27	0,00	0,00	0,00	0,00	0,00	68,49	75,78	74,33	71,94	67,92	63,82	57,85	49,01
	-	-							-				
		-	•	•	•	•	•	•			•	•	•
	•	•			•	•	•	•	•	•	•	•	
50	0,00	0,00	0,00	0,00	0,00	68,49	75,78	74,33	71,94	67,92	63,82	57,85	49,01
51	0,00	0,00	0,00	0,00	0,00	68,49	75,78	74,33	71,94	67,92	63,82	57,85	49,01

 Tabla 3. Valores de los flujos de calor por radiación para las 51 secciones del corte realizado.

No.	R-6	R-7	R-8	R-9	R-10	R-11	R-12	R-13	R-14	R-15	R-16	R-17	R-18
1	22,59	18,9	26,83	127,5	246,1	506,79	630,54	594,81	0,00	0,00	0,00	0,00	0,00
2	22,59	18,9	26,83	127,5	246,12	506,79	630,54	594,81	0,00	0,00	0,00	0,00	0,00
	-	-				-	-	-	-	-	-	-	-
	-	•	•	•	•		•	•	-	-		•	-
•	•	•	•	•					•	•	•	•	•
25	22,59	18,9	26,83	127,5	246,12	506,79	630,54	594,81	0,00	0,00	0,00	0,00	0,00
26	23,3	23,9	34,02	160,0	296,1	544,9	675,30	635,0	576,4	490,7	417,0	289,8	136,7
27	0,00	0,00	0,00	0,00	0,00	506,7	630,5	594,8	545,8	475,8	426,3	349,9	254,0
	-	-				-			-	-	-	-	
50	0,00	0,00	0,00	0,00	0,00	506,79	630,54	594,81	545,8	475,8	426,3	349,9	254,0
51	0,00	0,00	0,00	0,00	0,00	506,79	630,54	594,81	545,8	475,8	426,3	349,9	254,0

 I_G : radiación solar global (W/m²). Los números 6, 7, \ldots , 18 corresponden a la hora del día.

C: flujo de calor por convección; W/m².

R: flujo de calor por radiación; W/m².

			Va	lores de	la altura r	nedidos d	lesde la b	oase de la	pila (m)		
Hora	0	0,594	1,090	1,585	2,081	2,576	3,072	3,567	4,062	4,558	4,855
del día				Valor	es de la t	emperatu	ra del mi	neral (ºC)	\downarrow		
06:00	30	29,988	29,975	30,031	30,008	29,954	30,025	30,055	29,889	29,996	27,486
06:30	30	29,990	29,979	30,026	30,007	29,962	30,021	30,045	29,907	30,013	27,580
07:00	30	29,990	29,980	30,016	29,999	29,961	30,008	30,025	29,912	30,011	27,674
07:30	30	30,001	30,003	30,003	30,004	30,006	30,007	30,006	30,008	30,038	29,292
08:00	30	29,992	29,987	29,935	29,937	29,959	29,899	29,864	29,960	29,894	30,910
08:30	30	30,039	30,081	29,909	29,981	30,151	29,933	29,842	30,357	30,007	37,848

			Va	lores de	la altura r	nedidos d	desde la b	oase de la	pila (m)		
Hora	0	0,594	1,090	1,585	2,081	2,576	3,072	3,567	4,062	4,558	4,855
del día				Valor	es de la t	emperatu	ıra del mi	neral (ºC)	\downarrow		
09:00	30	30,058	30,123	29,823	29,938	30,219	29,840	29,683	30,551	29,886	44,785
09:30	30	30,091	30,189	29,766	29,939	30,347	29,808	29,593	30,845	29,832	52,954
10:00	30	30,107	30,225	29,681	29,894	30,404	29,713	29,439	31,017	29,653	61,123
10:30	30	30,144	30,297	29,635	29,908	30,546	29,699	29,374	31,334	29,587	70,850
11:00	30	30,201	30,407	29,669	30,016	30,781	29,828	29,487	31,784	29,708	80,578
11:30	30	30,176	30,361	29,603	29,930	30,673	29,697	29,345	31,620	29,381	85,484
12:00	30	30,211	30,424	29,707	30,062	30,824	29,889	29,583	31,855	29,561	90,391
12:30	30	30,148	30,301	29,675	29,952	30,564	29,750	29,484	31,365	29,222	89,313
13:00	30	30,128	30,258	29,746	29,981	30,487	29,816	29,615	31,169	29,261	88,236
13:30	30	30,100	30,200	29,792	29,980	30,377	29,838	29,692	30,919	29,297	86,480
14:00	30	30,085	30,168	29,860	30,014	30,324	29,911	29,819	30,766	29,468	84,723
14:30	30	30,058	30,112	29,902	30,009	30,217	29,930	29,884	30,523	29,601	81,929
15:00	30	30,042	30,079	29,961	30,034	30,159	29,989	29,989	30,365	29,846	79,135
15:30	30	30,017	30,029	29,999	30,030	30,061	30,007	30,046	30,142	30,063	75,506
16:00	30	30,006	30,004	30,062	30,064	30,023	30,080	30,161	30,020	30,401	71,878
16:30	30	29,976	29,944	30,105	30,056	29,906	30,098	30,224	29,754	30,666	66,300
17:00	30	29,959	29,909	30,169	30,083	29,846	30,164	30,336	29,587	31,042	60,723
17:30	30	29,930	29,849	30,232	30,092	29,733	30,211	30,436	29,317	31,390	53,045
18:00	30	32,189	34,013	35,839	37,663	39,486	41,313	43,138	44,958	46,621	45,367

Continuación de la Tabla 4.

Fabla 5. Valores de la temperatura	a del minera	al en función del	espesor de secado.
------------------------------------	--------------	-------------------	--------------------

			Valo	res de la	altura me	edidos de	sde la ba	se de la p	ila (m)		
Hora	3,864	3,963	4,062	4,161	4,261	4,360	4,459	4,558	4,657	4,756	4,855
del día				Valores	s de la ter	nperatura	del mine	eral (ºC) ↓			
06:00	30,083	30,054	29,889	29,950	30,155	30,039	29,763	29,996	30,446	29,744	27,486
06:30	30,069	30,043	29,907	29,962	30,129	30,027	29,804	30,013	30,363	29,661	27,580
07:00	30,045	30,022	29,912	29,959	30,093	30,004	29,827	30,011	30,269	29,576	27,674
07:30	30,008	30,005	30,008	30,014	30,008	29,998	30,013	30,038	29,975	29,719	29,292
08:00	29,839	29,852	29,960	29,921	29,779	29,846	30,036	29,894	29,534	29,777	30,910
08:30	29,756	29,848	30,357	30,164	29,532	29,898	30,749	30,007	28,599	30,796	37,848
09:00	29,527	29,691	30,551	30,208	29,140	29,786	31,209	29,886	27,606	31,877	44,785
09:30	29,367	29,614	30,845	30,340	28,819	29,771	31,787	29,832	26,700	33,423	52,954
10:00	29,143	29,464	31,017	30,360	28,443	29,678	32,197	29,653	25,864	35,128	61,123
10:30	29,007	29,417	31,334	30,507	28,151	29,707	32,789	29,587	25,116	37,376	70,850
11:00	29,073	29,566	31,784	30,813	28,107	29,948	33,476	29,708	24,826	40,085	80,578
11:30	28,906	29,417	31,620	30,610	27,927	29,822	33,272	29,381	24,980	42,034	85,484
12:00	29,157	29,688	31,855	30,835	28,222	30,149	33,481	29,561	25,778	44,487	90,391
12:30	29,093	29,568	31,365	30,451	28,294	29,995	32,668	29,222	26,939	45,745	89,313
13:00	29,278	29,702	31,169	30,369	28,631	30,112	32,201	29,261	28,383	47,131	88,236
13:30	29,407	29,774	30,919	30,238	28,903	30,150	31,684	29,297	29,775	48,229	86,480
14:00	29,587	29,901	30,766	30,200	29,216	30,245	31,309	29,468	31,167	49,246	84,723

			Valo	ores de la	altura me	edidos de	sde la ba	se de la p	oila (m)		
Hora	3,864	3,963	4,062	4,161	4,261	4,360	4,459	4,558	4,657	4,756	4,855
del día				Valores	s de la ter	nperatura	a del mine	eral (⁰C) ↓			
14:30	29,705	29,956	30,523	30,082	29,466	30,251	30,829	29,601	32,532	49,912	81,929
15:00	29,864	30,056	30,365	30,042	29,746	30,306	30,478	29,846	33,865	50,472	79,135
15:30	29,973	30,102	30,142	29,944	29,974	30,295	30,059	30,063	35,147	50,715	75,506
16:00	30,142	30,214	30,020	29,939	30,256	30,357	29,784	30,401	36,413	50,869	71,878
16:30	30,266	30,261	29,754	29,821	30,516	30,338	29,308	30,666	37,757	50,532	66,300
17:00	30,439	30,365	29,587	29,792	30,814	30,382	28,979	31,042	39,035	50,054	60,723
17:30	30,614	30,451	29,317	29,693	31,147	30,396	28,490	31,390	40,441	49,073	53,045
18:00	44,234	44,596	44,958	45,327	45,694	46,048	46,381	46,621	46,595	46,150	45,367

Continuación de la Tabla 5.

Tabla 6. Valores de la humedad del mineral para las alturas seleccionadas.

		Valores de la altura medidos desde la base de la pila (m)												
Hora	0	0,594	1,090	1,585	2,081	2,576	3,072	3,567	4,062	4,558	4,855			
del día				Val	ores de la	a humeda	d del min	eral (%) ↓	,					
06:00	36	36,000	36,000	36,000	36,000	36,000	36,000	36,000	36,000	36,000	36,000			
06:30	36	36,000	36,000	36,000	36,000	35,999	35,999	35,999	35,999	35,999	35,999			
07:00	36	36,000	35,999	35,999	35,999	35,998	35,998	35,998	35,997	35,997	35,997			
07:30	36	35,999	35,998	35,998	35,997	35,996	35,995	35,995	35,994	35,993	35,993			
08:00	36	35,998	35,997	35,996	35,994	35,993	35,991	35,990	35,989	35,987	35,987			
08:30	36	35,996	35,992	35,989	35,986	35,982	35,979	35,975	35,972	35,969	35,967			
09:00	36	35,991	35,984	35,976	35,969	35,962	35,954	35,947	35,939	35,932	35,928			
09:30	36	35,983	35,970	35,956	35,942	35,928	35,914	35,900	35,886	35,872	35,864			
10:00	36	35,972	35,948	35,925	35,902	35,878	35,855	35,831	35,808	35,785	35,770			
10:30	36	35,954	35,915	35,877	35,838	35,800	35,761	35,723	35,684	35,646	35,623			
11:00	36	35,928	35,868	35,807	35,747	35,687	35,627	35,567	35,506	35,446	35,410			
11:30	36	35,896	35,808	35,721	35,634	35,547	35,460	35,373	35,286	35,199	35,147			
12:00	36	35,856	35,736	35,617	35,497	35,377	35,257	35,137	35,017	34,898	34,826			
12:30	36	35,815	35,660	35,506	35,353	35,199	35,046	34,893	34,740	34,587	34,496			
13:00	36	35,772	35,582	35,393	35,204	35,015	34,827	34,639	34,451	34,263	34,151			
13:30	36	35,728	35,502	35,277	35,051	34,827	34,602	34,378	34,155	33,931	33,798			
14:00	36	35,684	35,421	35,158	34,897	34,635	34,374	34,114	33,854	33,594	33,439			
14:30	36	35,640	35,341	35,042	34,744	34,446	34,149	33,853	33,557	33,261	33,085			
15:00	36	35,597	35,263	34,928	34,595	34,262	33,930	33,598	33,267	32,937	32,739			
15:30	36	35,556	35,186	34,817	34,449	34,082	33,715	33,349	32,984	32,620	32,401			
16:00	36	35,515	35,112	34,710	34,309	33,908	33,508	33,109	32,710	32,313	32,074			
16:30	36	35,480	35,047	34,615	34,184	33,753	33,323	32,894	32,466	32,039	31,782			
17:00	36	35,449	34,991	34,533	34,076	33,620	33,164	32,709	32,255	31,801	31,530			
17:30	36	35,426	34,947	34,470	33,993	33,517	33,041	32,566	32,091	31,617	31,333			
18:00	36	35,410	34,918	34,427	33,937	33,447	32,957	32,468	31,979	31,491	31,198			

		Valores de la altura medidos desde la base de la pila (m)												
Hora	3,864	3,963	4,062	4,161	4,261	4,360	4,459	4,558	4,657	4,756	4,855			
del día				Valor	es de la h	numedad	del miner	al (%) ↓						
06:00	36,000	36,000	36,000	36,000	36,000	36,000	36,000	36,000	36,000	36,000	36,000			
06:30	35,999	35,999	35,999	35,999	35,999	35,999	35,999	35,999	35,999	35,999	35,999			
07:00	35,997	35,997	35,997	35,997	35,997	35,997	35,997	35,997	35,997	35,997	35,997			
07:30	35,994	35,994	35,994	35,994	35,994	35,993	35,993	35,993	35,993	35,993	35,993			
08:00	35,989	35,989	35,989	35,988	35,988	35,988	35,988	35,987	35,987	35,987	35,987			
08:30	35,973	35,973	35,972	35,971	35,971	35,970	35,969	35,969	35,968	35,967	35,967			
09:00	35,942	35,941	35,939	35,938	35,937	35,935	35,934	35,932	35,931	35,929	35,928			
09:30	35,892	35,889	35,886	35,884	35,881	35,878	35,875	35,872	35,870	35,867	35,864			
10:00	35,817	35,813	35,808	35,803	35,799	35,794	35,789	35,785	35,780	35,775	35,770			
10:30	35,700	35,692	35,684	35,677	35,669	35,661	35,654	35,646	35,638	35,630	35,623			
11:00	35,530	35,518	35,506	35,494	35,482	35,470	35,458	35,446	35,434	35,422	35,410			
11:30	35,321	35,303	35,286	35,269	35,251	35,234	35,216	35,199	35,181	35,164	35,147			
12:00	35,065	35,041	35,017	34,993	34,970	34,946	34,922	34,898	34,874	34,850	34,826			
12:30	34,801	34,770	34,740	34,709	34,679	34,648	34,618	34,587	34,557	34,526	34,496			
13:00	34,526	34,488	34,451	34,413	34,376	34,338	34,301	34,263	34,226	34,188	34,151			
13:30	34,244	34,199	34,155	34,110	34,065	34,021	33,976	33,931	33,887	33,842	33,798			
14:00	33,958	33,906	33,854	33,802	33,750	33,698	33,646	33,594	33,542	33,490	33,439			
14:30	33,675	33,616	33,557	33,498	33,439	33,380	33,321	33,261	33,202	33,143	33,085			
15:00	33,399	33,333	33,267	33,201	33,135	33,069	33,003	32,937	32,871	32,805	32,739			
15:30	33,130	33,057	32,984	32,911	32,838	32,765	32,692	32,620	32,547	32,474	32,401			
16:00	32,870	32,790	32,710	32,631	32,551	32,472	32,392	32,313	32,233	32,154	32,074			
16:30	32,637	32,552	32,466	32,381	32,295	32,210	32,124	32,039	31,953	31,868	31,782			
17:00	32,436	32,346	32,255	32,164	32,073	31,983	31,892	31,801	31,711	31,620	31,530			
17:30	32,281	32,186	32,091	31,996	31,902	31,807	31,712	31,617	31,523	31,428	31,333			
18:00	32,175	32,077	31,979	31,881	31,784	31,686	31,588	31,491	31,393	31,295	31,198			

Tabla 7. Valores de la humedad del mineral en función del espesor de seca

 Tabla 8.
 Valores de la velocidad de secado para las alturas seleccionadas.

Hora del día		Valores de la altura medidos desde la base de la pila (m)													
	0	0,594	1,090	1,585	2,081	2,576	3,072	3,567	4,062	4,558	4,855				
06:00	Valores de la velocidad de secado (%/h) ↓														
07:00	0,000	0,000	0,001	0,001	0,001	0,002	0,002	0,002	0,003	0,003	0,003				
08:00	0,000	0,001	0,001	0,002	0,002	0,003	0,003	0,004	0,004	0,005	0,005				
09:00	0,000	0,002	0,004	0,006	0,008	0,010	0,012	0,014	0,016	0,018	0,020				
10:00	0,000	0,005	0,009	0,013	0,017	0,021	0,025	0,029	0,033	0,037	0,039				
11:00	0,000	0,009	0,016	0,024	0,031	0,038	0,046	0,053	0,060	0,068	0,072				
12:00	0,000	0,012	0,022	0,032	0,042	0,052	0,062	0,072	0,081	0,091	0,097				
13:00	0,000	0,012	0,022	0,032	0,042	0,052	0,061	0,071	0,081	0,091	0,096				
14:00	0,000	0,011	0,020	0,029	0,038	0,048	0,057	0,066	0,075	0,084	0,089				
15:00	0,000	0,010	0,018	0,026	0,034	0,041	0,049	0,057	0,065	0,073	0,078				
16:00	0,000	0,008	0,015	0,022	0,029	0,035	0,042	0,049	0,056	0,062	0,066				
17:00	0,000	0,006	0,011	0,016	0,021	0,026	0,031	0,036	0,041	0,046	0,050				
18:00	0,000	0,003	0,006	0,009	0,012	0,014	0,017	0,020	0,023	0,026	0,028				

$\phi_m \rightarrow$	10	15	20	25	30	35	40	45	50	55	60	
φt↓	Área de exposición de la pila (m²) \downarrow											
10	773,8	791,8	820,9	854,3	887,7	919,3	948,90	976,63	1002,8	1027,7	1051,8	
15	775,5	789,0	813,3	849,8	893,6	940,6	988,52	1036,4	1084,0	1131,5	1179,0	
20	778,2	791,1	811,0	842,8	887,8	942,3	1003,1	1068,0	1136,0	1206,8	1280,5	
25	781,2	794,9	813,5	840,9	881,6	936,9	1004,4	1081,4	1166,5	1259,1	1359,2	
30	784,5	799,4	818,4	843,8	880,0	931,6	1000,1	1084,0	1181,9	1293,2	1418,5	
35	788,1	804,4	824,4	849,7	883,4	930,3	995,75	1081,4	1187,3	1313,5	1461,4	
40	791,9	810,0	831,4	857,5	890,5	934,3	994,89	1078,1	1187,1	1323,6	1490,4	
45	796,1	816,1	839,3	866,7	900,2	942,9	999,57	1077,8	1185,2	1326,9	1508,1	
50	800,7	822,9	848,1	877,3	912,1	954,9	1009,8	1083,3	1185,6	1327,2	1517,1	
55	805,9	830,6	858,1	889,5	926,1	970,1	1024,9	1095,9	1192,4	1328,7	1520,8	
60	811,7	839,3	869,6	903,6	942,6	988,7	1044,6	1115,2	1208,1	1337,1	1524,2	

 Tabla 9. Valores del área de exposición calculados para la pila analizada.

 Tabla 10.
 Valores del volumen calculados para la pila analizada.

φ _m →	10	15	20	25	30	35	40	45	50	55	60		
φt↓	Volumen de la pila (m³) ↓												
10	182,53	219,8	245,3	264,1	278,7	290,61	300,55	309,12	316,69	323,54	329,85		
15	220,52	277,3	319,2	351,7	378,0	400,14	419,20	436,05	451,28	465,30	478,47		
20	246,60	319,8	376,7	422,8	461,5	494,84	524,30	550,92	575,44	598,44	620,38		
25	265,88	353,0	423,6	482,7	533,7	578,75	619,44	656,93	692,08	725,60	758,09		
30	280,92	380,0	462,9	534,4	597,6	654,72	707,26	756,52	803,49	849,02	893,83		
35	293,15	402,6	497,0	580,3	655,6	724,85	789,77	851,67	911,65	970,68	1029,6		
40	303,43	422,3	527,2	621,9	709,0	790,77	868,63	944,07	1018,3	1092,4	1167,7		
45	312,32	439,7	554,6	660,3	759,3	853,78	945,22	1035,2	1125,1	1216,3	1310,3		
50	320,20	455,4	579,8	696,4	807,4	914,99	1020,7	1126,4	1233,7	1344,1	1459,9		
55	327,34	470,0	603,6	730,9	854,1	975,39	1096,4	1219,3	1345,8	1478,4	1619,5		
60	333,92	483,6	626,3	764,4	900,2	1035,9	1173,5	1315,2	1463,6	1621,7	1793,0		