

Ministerio de Educación Superior Instituto Superior Minero Metalúrgico Dr. Antonio Núñez Jiménez Facultad Metalurgia y Electromecánica Departamento de Ingeniería Mecánica

# Estudio del Hidrotransporte de las Colas en el Proceso Carbonato Amoniacal.



Tesis en Opción al Grado Científico de Doctor en Ciencias Técnicas.

Autor: Ing. Alberto Turro Breff.

Tutores:Dr.C. Leonel Garcell Puyáns. Dr.C. Rafael Pérez Barreto. Dr.C. Raúl Izquierdo Pupo. Dr.C. Arístides Legrá Lobaina.

**Moa**, 2002

#### INTRODUCCIÓN.

En el año 2000 la industria del Níquel constituyó la primera fuente de exportación del país y se encuentra enfrascada en el proceso de ampliación de las capacidades instaladas y modernización de su tecnología, lo que le permitirá ir incrementando su papel en la economía nacional.

En la resolución económica del **V Congreso del Partido Comunista de Cuba** (1997), se plantea que para la recuperación y desarrollo de la economía cubana es necesario intensificar el desarrollo de la industria minero - metalúrgica y como objetivo estratégico incrementar la producción de concentrado de Níquel con la mayor eficiencia en las inversiones.

Para cumplir estos lineamientos a mediano y largo plazo, se requiere que paralelamente al crecimiento progresivo se perfeccionen los parámetros y regímenes de trabajo de las instalaciones tecnológicas para explotar de una forma más racional y eficiente las grandes reservas de recursos minerales existentes en los yacimientos niquelíferos en la parte oriental de Cuba y se perfeccione el sistema de transportación de minerales lo que garantizará la existencia de un proceso productivo continuo.

Dentro del complejo tecnológico de la industria niquelífera cubana, las empresas Comandante René Ramos Latour de Nicaro y Ernesto Che Guevara de Moa, realizan la producción de Níquel más Cobalto por el proceso Carbonato Amoniacal (**CARON**).

En el costo de la extracción del Níquel y en la eficiencia de su proceso tecnológico incide significativamente el tratamiento de las colas, que contienen minerales útiles que se depositan en diques para su aprovechamiento futuro y cuyo volumen es relativamente grande, del orden de 104 T de colas por cada tonelada de níquel producido.

El costo de producción del Níquel por el proceso CARON esta incrementado en gran medida por el elevado consumo energético. En el tratamiento de las colas incide, además, una baja eficiencia del transporte hidráulico cuya causa se requiere precisar para disminuir los costos e incrementar su fiabilidad.

En este tipo de transporte el consumo energético depende en gran medida de las pérdidas de carga a lo largo de la tubería y ésta, a su vez, depende del diámetro de la conductora, su estado de explotación, el material y tecnología de que está hecho, el régimen de trabajo de la instalación y de las propiedades físico mecánicas del material y de sus suspensiones.

Estos factores tienen distintos grados de influencia y son muy variables e inciden con diferentes magnitudes, tanto en los indicadores económicos como en la eficiencia del proceso tecnológico. Cualquier estudio encaminado a perfeccionar el sistema de evacuación de pulpas implicaría el análisis de estos factores en el proceso. El orden de la realización de los estudios no está relacionado obligatoriamente con el grado de incidencia, sino con la obtención organizada de los datos que se requieren.

Los desechos lixiviados (colas) constituyen suspensiones minerales con particularidades no newtonianas poco conocidas que influyen en el proceso de transportación.

La variabilidad de estas propiedades y de las condiciones de hidrotransportación limitan el campo de aplicación de las fórmulas de cálculo conocidas, y no resulta posible determinar los parámetros de transportación con la precisión necesaria para los objetivos prácticos. Los métodos de cálculo propuestos para estos parámetros, basados en las características del flujo plástico – viscoso de BINGHAM necesitan en muchas ocasiones correcciones fundamentadas en los resultados experimentales. Por ello, los resultados publicados sobre trabajos realizados con múltiples hidromezclas aún resulta insuficiente para la obtención de correlaciones más generalizadas.

El análisis de las condiciones técnicas y de explotación del sistema de hidrotransporte de las colas en la planta de Recuperación de Amoniaco de la Empresa Ernesto Che Guevara muestra problemas respecto a:

- Dificultades de explotación de los equipos e instalaciones de bombeo que no trabajan en regímenes eficientes de trabajo y con frecuencia cavitan.
- Desconocimiento del comportamiento de las colas en función de las propiedades físico – químicas y reológicas de las mismas.

- Ausencia de un dosificador en la entrega de pulpa a las bombas y dificultades para su elección por desconocimiento de los parámetros de hidrotransporte.
- Diferencia de nivel en las descargas de las líneas que incide en la productividad del sistema.

Las metodologías de cálculo y evaluación disponible para el estimado de los parámetros indispensables para proyectar una instalación de transporte hidráulico, han sido elaboradas a partir de los datos experimentales obtenidos para sistemas particulares y no existe una metodología única para determinar los parámetros. Por ello se requiere de la generalización de los resultados experimentales que permitan la solución racional de diversos problemas en las condiciones de la Empresa "Comandante Ernesto Che Guevara".

Para fundamentar y proyectar una instalación de transporte hidráulico, es necesario determinar la velocidad crítica, las pérdidas específicas de carga, la densidad o concentración de las mezclas, el diámetro del conducto que permita la determinación del régimen racional del trabajo y elegir los equipos adecuados para el caso concreto, lo que están influidos por las propiedades físico – mecánicas de las pulpas. Estos parámetros tienen incidencia en la magnitud de las inversiones, en los gastos de explotación y en la fiabilidad del trabajo de la instalación.

**Situación Problémica:** En la actualidad el sistema de hidrotransporte de las colas de la Empresa "Comandante Ernesto Che Guevara" presenta alta ineficiencia debido a problemas técnicos y operacionales que conducen a que la instalación de transportación de este material opere en un régimen cavitacional, con los correspondientes incrementos en el consumo energético, de agua y materiales para el mantenimiento. Hasta el presente esta situación no se resuelve dado por el desconocimiento de las propiedades de las colas y por no contar con un método de cálculo y evaluación apropiado.

**Problema Científico:** Obtener las propiedades de las colas y un modelo de cálculo, que permita establecer los parámetros racionales de operación del sistema de flujo para la transportación de las colas.

Las dificultades de explotación y los posibles incrementos de la producción de la empresa, determinan la necesidad de un estudio de las regularidades del movimiento del flujo y la elaboración de la metodología de cálculo para el hidrotransporte de las colas del proceso Carbonato Amoniacal, que constituye el objetivo fundamental del presente trabajo. Por consiguiente la Hipótesis de la Tesis establece que el empleo de las propiedades físico mecánicas y reológicas de las colas en la obtención de un sistema de ecuaciones para el cálculo del hidrotransporte en tres fases, permitirá obtener parámetros más racionales de operación, diseño y mejorar la eficiencia de las instalaciones de la Empresa "Comandante Ernesto Che Guevara".

Por tanto, para cumplir el objetivo central, se desarrollaron los siguientes objetivos específicos:

- Caracterizar las colas desde el punto de vista químico, mineralógico, reológico, granulométrico y de su estabilidad y establecer la influencia de estos factores sobre su comportamiento.
- Realizar las investigaciones teóricas y experimentales de los principales parámetros del transporte hidráulico de las colas.
- Proponer un modelo físico matemático del movimiento de las hidromezclas de las colas, teniendo en cuenta sus características de sistema trifásico.
- Elaborar una metodología para el cálculo y proyección del complejo de hidrotransporte.
- Contribuir a la disminución de los costos de producción sobre la base de la reducción del consumo energético, de los gastos de mantenimiento y de la magnitud de las inversiones requeridas con vista a mejorar la fiabilidad de las instalaciones industriales.

 Proporcionar información, acerca de los elementos nuevos que contribuyan a la disminución de la agresión ecológica debido al almacenamiento y manipulación actual de las colas.

### Novedad Científica

I.- La caracterización de la fase sólida y de la hidromezcla de las colas, mediante:

- El establecimiento de los modelos reológicos que describen el comportamiento no newtoniano de las colas del proceso CARON, aspecto este desconocido hasta el presente.
- La evaluación de la estabilidad de las colas y del efecto de las propiedades de la fase sólida, la temperatura, la concentración y el pH sobre los parámetros reológicos y la viscosidad de sus hidromezclas a través de los modelos matemáticos obtenidos en relación con estos aspectos.
- El sistema de correlaciones, derivado del modelo físico propuesto, para el cálculo y evaluación de las instalaciones de hidrotransporte que manipulan las pulpas de cola constituyen un sistema trifásico novedoso para las condiciones de la Empresa "Comandante Ernesto Che Guevara".
- II. La propuesta de una metodología de cálculo y evaluación de las instalaciones de hidrotransporte que manipulan las pulpas de cola, derivado de los resultados de la caracterización realizada y del sistema de ecuaciones producto del modelo físico – matemático propuesto para este sistema.

# Aportes Metodológicos

- Se establece una metodología para el cálculo y evaluación de un sistema de hidrotransporte de una hidromezcla con características trifásicas pudiendo generalizarse la aplicación de dicho modelo a otras plantas de producción de níquel por el proceso CARON.
- Se ilustra la necesidad de utilizar los parámetros que caracterizan el comportamiento reológico de fluidos en el cálculo y evaluación de problemas del transporte de materiales no newtonianos por tuberías,
- Los resultados de la caracterización y el modelo propuesto para describir el sistema trifásico puede ser introducido en temas de asignaturas afines de las carreras de Metalurgia, Mecánica, Minería e Ingeniería Química.

### Valor práctico

- La aplicación de los modelos reológicos obtenidos permiten determinar el comportamiento de las colas y los valores de sus parámetros.
- La aplicación de los modelos obtenidos permiten estimar la viscosidad y los parámetros reológicos en función de la concentración, temperatura y pH.
- Con el sistema de ecuaciones obtenidas es posible calcular las instalaciones de bombeo para ser empleadas en un sistema de flujo dado.
- La investigación de los parámetros permite estabilizar la producción y disminuir los costos mediante la reducción del consumo energético, la magnitud de las inversiones, su amortización, y el perfeccionamiento de la tecnología del hidrotransporte.

### Tareas principales a desarrollar.

- 1. Determinar las propiedades físico mecánica de las colas.
- 2.- Elaborar y fundamentar el modelo físico matemático para el flujo de pulpas de colas a altas temperaturas.
- 3.- Realizar las investigaciones teóricas y experimentales de los principales parámetros hidráulicos de las colas.
- 4.- Elaborar la metodología de cálculo y proyección del hidrotransporte de las colas a partir del modelo matemático que se obtenga.
- 5.- Elaborar las recomendaciones en particular definir el régimen de trabajo para la reducción del consumo energético y del gasto de las inversiones.

#### CAPITULO I. REVISION BIBLIOGRAFICA.

La necesidad de determinar con más precisión los parámetros para la transportación por tuberías de mezclas concentradas de diferentes productos líquidos y materiales áridos, es evidente durante la manipulación de los materiales en operaciones y procesos tecnológicos, en diferentes ramas de la economía nacional (metalurgia, petróleo, construcción, industria química y la agricultura).

La variedad de las propiedades físico – mecánicas de estas mezclas confiere propiedades específicas a los flujos en su movimiento por tuberías u otros dispositivos de transporte similares. Con frecuencia se requiere la transportación de suspensiones concentradas que exhiben propiedades no newtonianas, en las que las partículas tienden a formar estructuras que exhiben, un comportamiento seudoplástico, o características plásticas con la aparición de esfuerzos cortantes iniciales. En dependencia de las condiciones de operación, dichos flujos pueden ser laminares o turbulentos con diferentes influencias de las características reológicas de las mezclas . Darby, R.(2000). El conocimiento de las propiedades de flujo de las suspensiones que se transportan es de gran importancia para decidir las características de los sistemas de bombeo, redes de tuberías, accesorios y equipos que deben utilizarse según las necesidades tecnológicas, así como los requerimientos medio ambientales, no menos importante que deben tenerse en cuenta en todo proceso de carga, transportación, vertimiento y almacenamiento de cualquier tipo de material.

A continuación se realizará el análisis de los distintos aspectos relacionados con el tema, que se abordan en la bibliografía consultada, con la finalidad de disponer de los elementos básico invariantes y de las tendencias actuales que resulten esenciales para el correcto desarrollo del trabajo.

En la mayoría de los casos, en la práctica mundial, el análisis del hidrotransporte tiene un carácter bifásico, es decir partículas sólidas suspensas en líquidos, en casi todos los casos se encuentran gases disueltos en la fase líquida mediante la ebullición que tiene lugar al igualarse la presión con la tensión de vapor. Estos problemas tratados de una u otra forma en la

literatura reportada por Daniels, Alberty (1963) influyen considerablemente en los parámetros de los flujos y en la durabilidad del equipamiento.

La concentración de los gases disueltos en el líquido depende de la solubilidad del gas en cuestión según Daniels, Alberty (1963) y de la presión del líquido. Por razones tecnológicas en las colas de la Empresa Ernesto Che Guevara están constituidos por soluciones amoniacales, gas de alta solubilidad y fácil desprendimiento del líquido, lo que crea una nueva fase gaseosa que incide con fuerza en los parámetros de flujos y que en la literatura se reporta como modelo trifásico según Mijailov (1996) de donde se deduce la necesidad de investigar las propiedades reológicas de la pulpa y la influencia de la fase gaseosa en los parámetros del transporte hidráulico de las colas de la Empresa Ernesto Che Guevara.

#### 1.1.1. Clasificación reológica general de los fluidos.

En la teoría y la práctica actual , los fluidos se clasifican desde el punto de vista reológico en newtoniano y no newtoniano, según Skelland (1970), Tejeda (1985), Perry (1988) y Díaz (1989). A su vez los fluidos no newtonianos se clasifican en tres grupos:

- De viscosidad invariable con el tiempo.

- De viscosidad dependiente del tiempo.

- Materiales (líquidos de Maxwuel)

#### Fluidos de viscosidad invariable con el tiempo:

a) <u>Seudoplásticos</u>: La viscosidad disminuye con el incremento de  $\gamma$ . El líquido comienza a fluir inmediatamente después que se le aplica un esfuerzo cortante ( $\tau > 0$ ). b) <u>Dilatantes</u>: La viscosidad aumenta con el incremento de  $\gamma$ . Estos líquidos fluyen también para valores de ( $\tau > 0$ ).

c) <u>Plásticos reales</u>: La viscosidad puede disminuir o aumentar con un incremento de  $\gamma$ . Fluyen para valores de  $\tau > \tau_o$ . La principal característica de los plásticos ideales y reales es que poseen una estructura tridimensional muy fuerte cuando están en reposo, la cual resiste la deformación o el movimiento. Para valores del esfuerzo cortante  $\tau < \tau_o$ , no se establece el flujo. Para  $\tau \ge \tau_o$ , la estructura se rompe, permitiendo que se establezca el

flujo del material. Al reducir el esfuerzo hasta valores de  $\tau \leq \tau_o$  la estructura de dicho fluido se restablece (Figura 1.1).

# Fluidos de viscosidad dependiente con el tiempo:

- Tixotrópicos.
- Reopécticos.

### Materiales viscoelásticos (líquidos de Maxwell).

Estos materiales exhiben propiedades viscosas y elásticas. Las sustancias viscoelásticas fluyen bajo la acción del esfuerzo cortante, pero, aunque la deformación es continua no resulta totalmente irreversible, de manera que al cesar la acción del esfuerzo cortante, el material restablece en parte su forma, semejante al comportamiento de los cuerpos elásticos sólidos. Este comportamiento se ha observado en NAPALM, en soluciones de polímeros, en masas cocidas de la industria azucarera con altos contenidos de gomas (polisacáridos), en ciertas resinas y en emulsiones de crudo cubano, de acuerdo a lo reportado por Toose (1995) y Ferro (2000).

# 1.1.2 Curvas de flujo.

Las curvas de flujo se representan gráficamente al relacionar valores experimentales de  $\tau$  contra (- dv/dy ). Así, se obtendrán curvas de flujo de diferentes formas en dependencia de la naturaleza reológica de los fluidos (Figura 1.1), según Turiño (1984) y Tejeda (1985).



Figura 1.1 Curvas de flujo típicas de fluidos no newtonianos independientes del tiempo.

1- newtoniano; 2 - seudoplástico; 3 - dilatante; 4 - plástico real y 5 – plástico ideal (Bingham).

Las curvas de flujo son útiles, fundamentalmente, en el diseño de equipos o en la evaluación de instalaciones ya construidas, por ejemplo, para determinar la caída de presión necesaria para que un material no newtoniano fluya por una tubería de diámetro conocido; para determinar si un equipo ya construido (con el fin de transportar o elaborar un material determinado) puede ser usado con otro material diferente; para clasificar los materiales reológicamente y encontrar el modelo adecuado; para comparar características estructurales o de calidad de un mismo producto obtenido sin producciones "batch" y que hayan sido fabricadas sustituyendo algún componente por otro, de acuerdo a lo reportado por Toose (1995).

#### 1.1.3 Modelos reológicos.

Se han propuesto numerosas ecuaciones empíricas (modelos reológicos)

para expresar la relación que existe en estado estacionario entre  $\tau$  y  $\gamma$ . Todas estas ecuaciones contienen parámetros empíricos positivos, cuyo valor numérico puede determinarse a partir de los datos de la curva de flujo a temperatura y presión constante. Los modelos mas difundidos de acuerdo a lo reportado por Bind (1973), Skelland (1970), Tejeda (1985) y Garcell (1988), son los siguientes:

a) Modelo de Ostwald de Waele:

Esta ecuación de dos parámetros se conoce también como Ley de Potencia. Se utiliza mucho para describir el comportamiento reológico de fluidos seudoplásticos y dilatantes. El parámetro n es el índice de flujo, y es una medida del grado de comportamiento no newtoniano del material. Para n < 1 el fluido es seudoplástico, mientras que para valores mayores que la unidad es dilatante. Para n = 1, (ecuación 1.2) se transforma en la ley de Newton, siendo K =  $\mu$ . El parámetro K es el índice de consistencia, el cual da una medida del grado de viscosidad del material.

Para los fluidos no newtonianos se utiliza el concepto de viscosidad aparente ( $\mu_a$ ). De acuerdo con la (ecuación 1.1) la viscosidad aparente viene dada por la relación:

Si en esta expresión se sustituye la ecuación (1.2) se obtiene:

$$\mu_a = \left( \begin{array}{c} \cdot \\ \gamma \end{array} \right)^{n-1} \quad \dots \qquad (1.4)$$

b) Modelo de Bingham:

$$\tau = \tau_o + \mu_p \left( \dot{\gamma} \right).$$
 (1.5)

Donde  $\tau_o$  es el esfuerzo cortante limite o inicial que es necesario vencer para que el fluido fluya,  $\mu_p$  es la viscosidad plástica. Este modelo se utiliza para describir el comportamiento de los plásticos ideales, los cuales también se conocen como plásticos de Bingham. Para  $\tau_o = 0$  (la ecuación 1.5) se transforma en la ley de Newton, siendo  $\mu_p = \mu$ .

La viscosidad aparente para los plásticos de Bingham se obtiene sustituyendo la (ecuación 1.5) en la relación (1.4):

$$\mu_a = \mu_p + \frac{\tau}{\gamma} \qquad (1.6)$$

c) Modelo de Bulkley – Herschel.

 $\tau = \tau_{o} + K(\gamma)^{n}$  .....(1.7)

Los parámetros k, n,  $\tau_o$  tienen el mismo significado que en los dos modelos anteriores. Se utiliza para describir el comportamiento de los plásticos reales. Para n = 1, (la ecuación 1.7) se transforma en el modelo de Bingham, para  $\tau_o = 0$ , en el modelo de Ostwald de Waele, y para  $\tau_o = 0$  y n = 1 se transforma en la ley de Newton.

Los tres modelos analizados son los más difundidos en la literatura especializada y los que más se han utilizado en el diseño de sistemas de flujos. No obstante, existen otros modelos que también pueden describir el comportamiento reológico de los materiales no newtonianos con mayor o menor precisión en dependencia de las características de esos materiales, por ejemplo los modelos: 1) de Eyring; 2) de Ellis; 3) de Casson, etc.

Si se combinan (las ecuaciones 1.7 y 1.4), se obtiene la expresión de la viscosidad aparente:

 $\mu_a = \frac{\tau_{\circ}}{\gamma} + k \left( \frac{\gamma}{\gamma} \right)^{n-1} \dots (1.8)$ 

# 1.2 Tipos de Reómetros (Viscosímetros).

Existen numerosos tipos de reómetros que se han diseñado y comercializado. Solo cuatro de ellos, reúnen las condiciones necesarias para ser usados en la determinación de propiedades reológicas, estas son: a) el de tubo capilar, b) el rotacional de cilindros concéntricos, c) el rotacional en medio infinito, d) el rotacional de cono y plato según , Díaz (1989), Garcell (1988), Perry (1988), Rosabal (1988), Skelland (1970), Tejeda (1985).

Los viscosímetros rotacionales (reómetros) son los mas difundidos para realizar estudios reológicos. En la figura 1 del anexo 1 se muestra un esquema de los elementos básicos de medición de los mismos.

1.3 Estabilidad de las suspensiones. Propiedades superficiales. La doble capa eléctrica. Potencial Zeta. Densidad de carga de las partículas.

Muchas partículas coloidales en contacto con un líquido polar, como por ejemplo el agua, adquieren una carga eléctrica superficial Cerpa (1999)., dando lugar a la aparición de las llamadas propiedades superficiales de las suspensiones coloidales, tales como: la densidad de carga de la superficie, el punto de carga cero, los potenciales electrocinéticos, el punto izo eléctrico, etc., que dependen en gran medida del pH de la suspensión.

La carga superficial influye en la distribución de los iones vecinos que se hayan en el líquido de manera que los iones de carga opuestas ( contraiones) son atraídos hacia la superficie y los iones con la misma carga ( coiones) son alejados de la superficie por repulsión.

La teoría de la doble capa eléctrica trata sobre la distribución de los iones, y , por consiguiente, sobre la magnitud de los potenciales eléctricos que existen en la proximidad de la superficie cargada.

Stern propuso un modelo para la doble capa eléctrica, donde plantea que esta está formada por dos partes, una que permanece fija a la superficie

sólida, con un espesor aproximado de un diámetro de molécula, mientras la otra es una capa difusa que penetra en la solución. Establece además, que la capa fija y la difusa están separadas por un plano, llamado plano de Stern. Los iones adsorbidos están localizados en este plano, es decir , entre la superficie y el plano de Stern. Los iones localizados mas allá de este plano forman la parte difusa de la doble capa.

La superficie de cizalla es la interfase de contacto entre las fases en el movimiento relativo, el potencial de esta superficie es conocido como el potencial zeta,  $\xi$ . (ver figura 2. anexo 1)

En los sistemas dispersos con características coloidales, la densidad de carga superficial de las partículas,  $\sigma_o$  y el potencial zeta,  $\xi$ , son funciones del pH y de la concentración del electrolito indiferente (fuerza iónica) en el medio dispersante,

Tanto  $\sigma_0$  como  $\xi$  constituyen una medida de la estabilidad de la suspensión. La magnitud del pH a la cual  $\sigma_0 = 0$  y  $\xi = 0$  se denominan: punto de carga cero ( p.z.c), y punto izoeléctrico ( i.e.p) respectivamente . El punto de carga cero y el punto izoeléctrico coinciden cuando no hay adsorción específica de aniones y/o cationes en la superficie de las partículas.

#### Mecanismos de carga superficial de las partículas.

Los mecanismos más importantes por lo que la superficie de las partículas pueden cargarse eléctricamente son los siguientes: lonización, formación de iones complejos, adsorción específica de iones, según, Cerpa (1999).

<u>Ionización</u>: Tiene lugar por la disociación de grupos ionogénicos superficiales, en dependencia del pH de la solución. Por ejemplo, las proteínas poseen grupos carboxilo y amino que se ionizan para dar iones COO<sup>-</sup> y NH<sub>3</sub><sup>+</sup>

<u>Formación de iones complejos</u>: Un modelo simple generalizado propone que los centros activos MOH, presentes en óxidos y oxihidróxidos tales como: la Maghemita, la Goethita, la Gibbsita, la Sílice y otros, dan lugar a la formación de pares de iones  $MOH_2^+$  MO<sup>-</sup> que dan carga a la superficie y que interaccionan con los cationes y aniones que se encuentran en el medio dispersante Garcell (1998). En estos óxidos, los centros activos exhiben un comportamiento anfotérico, coexistiendo simultáneamente sitios neutros MOH

y sitios cargados de  $MOH_2^+$  y  $MOH^-$ . El tipo predominante de estos sitios depende del pH. Así, a pH inferiores al p.z.c o al i.e.p. las cargas netas superficiales pueden ser positivas y a pH mayores a dichos puntos, negativas. La carga neta viene dada por la diferencia entre el número de sitios  $MOH_2^+$  y el número de sitios  $MO^-$  por unidad de superficie. A pH = p.z.c, predominan los sitios MOH y la concentración de los grupos remanentes de  $MOH_2^+$  y  $MO^-$ , son iguales, de manera que la carga superficial de la partícula se hace nula.

#### Adsorción iónica.

Es posible que la superficie adquiera una carga neta por la adsorción desigual de iones de signos opuestos. Se consideran iones adsorbidos específicamente a aquellos que están unidos a la superficie de la capa de Stern, por fuerzas electrostáticas o de Van der Waals, lo suficientemente fuerte para superar la agitación térmica.

Una de las leyes importantes de la Química de Superficie establece un cierto orden en relación con los iones que pueden ser adsorbidos en la superficie de los óxidos y de otros compuestos de acuerdo a lo expresado por Demai (1996), Torres (1989).

Según esta Ley se adsorberán preferiblemente los iones de mayor valencia, y para los de una misma valencia, los que tengan mayor radio iónico. Esto da lugar a las llamadas series <u>liotrópicas de adsorción</u>. Por ejemplo, la secuencia de afinidad normal ( series liotrópicas o de Hofmeister) que presentan muchos óxidos es la siguiente:

 $AI^{3+} > Ca^{2+} > K^{1+}$  ( en relación con la valencia).

 $Ba^{2+} > Sr^{2+} > Ca^{2+} > Mg^{2+}$  ( en relación con el radio iónico)

Mediante estudios realizados sobre los fenómenos superficiales de la Goethita en agua de mar, por Balistrieri y Murray (1979), se logró la serie liotrópica para este mineral.

 $H^{+} >> Mg^{2+} = SO_{4}^{2-} > Ca^{2+} > Cl = Na^{+} = K^{+}$ 

Puede observarse que la Goethita muestra una serie líotrópica irregular, ya que la adsorción del Mg  $^{2+}$  > Ca $^{2+}$  es contraria a la secuencia de afinidad

normal de Hofmeister presentada arriba. También puede verse que la Goethita tiene gran afinidad por los iones Mg<sup>2+</sup> y SO<sub>4</sub><sup>2-</sup>.

La adsorción iónica se puede producir por intercambio de iones contenidos en el sólido y en el líquido circundante. En los procesos de intercambio iónico, la carga neta de la superficie de las partículas no se altera ,según Guardia (1994), Torres (1989) y Muñiz (2001), han realizado trabajos con pulpas de laterita de Moa que demuestran las características coloidales de éstas por su alto contenido de partículas finas, y en las que se observan y se miden propiedades superficiales. No se han encontrado trabajos similares acerca de las colas del proceso CARON.

# 1.4 Efecto de las propiedades superficiales en las características reológicas de las suspensiones concentradas.

En las dispersiones gruesas, donde las partículas son de tamaño relativamente grande, el área superficial total de la fase sólida resulta relativamente pequeña. En estos sistemas el efecto de las propiedades superficiales es prácticamente despreciable. En cambio, en las suspensiones coloidales cuya fase dispersa posee un área superficial grande, el efecto de las propiedades de superficie desempeñan un papel muy importante. Ello se debe, fundamentalmente, a que el comportamiento reológico es afectado grandemente por la densidad de carga superficial y por la fuerza iónica del medio dispersante, ya que estas variables influyen sobre la interacción neta entre las partículas.

La interacción neta es la suma de un componente repulsivo y un componente atractivo. El componente atractivo viene dado por las fuerzas de atracción del Van der Waals y no es sensible a los fenómenos superficiales . El componente repulsivo se debe a las fuerzas repulsivas eléctricas que rodean a las partículas ( repulsión de Born).

Cuando la interacción neta es repulsiva se observa un comportamiento newtoniano de la suspensión, en cambio, cuando la interacción neta es atractiva la suspensión puede exhibir un comportamiento seudoplástico o plástico, debido a la formación de agregados o flóculos, o de una estructura espacial. En los trabajos de Cerpa y Col (1997), (1998), (1999) con pulpas laterititas, así como de Leong y Boger (1990) y con suspensiones de líquido

se ilustra la relación entre los fenómenos de la Química de Superficie y la reología. No se han encontrado trabajos sobre las colas del proceso CARON que traten sobre estos aspectos.

Teniendo en cuenta todo lo hasta aquí explicado, resulta evidente que los efectos de las propiedades superficiales sobre la reología de las suspensiones minerales coloidales es un fenómeno de carácter universal, de manera que los principios que rigen estos procesos pueden ser aplicados independientemente del tipo de mineral que forme la dispersión.

# 1.5 Interacciones y factores que influyen sobre el comportamiento y propiedades reológicas de las dispersiones minerales.

Cuando un sólido es dispersado en un líquido, la viscosidad de la suspensión que se forma se incrementa. La dispersión puede exhibir comportamiento newtoniano o no newtoniano, en dependencia de las interacciones físicas y químicas que tiene lugar entre las partículas y el líquido, así como de la naturaleza y características de las fases mineralógicas que constituyen el sólido [69].

En la literatura especializada se han analizado diferentes tipos de interacciones, los cuales han sido resumidos por Cheng (1980) dentro de tres categorías diferentes:

- Interacciones hidrodinámicas entre el líquido y las partículas sólidas dispersas, las cuales incrementan la disipación viscosa en la suspensión.
- La atracción entre partículas que da lugar a la formación de flóculos, agregados y estructuras.
- El contacto partícula partícula, el cual es la causa de las interacciones de fricción.

Además de estas interacciones existe un número de factores que ejercen gran influencia sobre el comportamiento de las dispersiones, tales como: tamaño y distribución de tamaño de las partículas; composición química y mineralógica del sólido; composición iónica del medio dispersante; concentración de la fase sólida; temperatura y pH.

A continuación se analizan brevemente los efectos de los factores más importantes:

#### Efecto de la granulometría.

En general, las suspensiones de partículas finas exhiben mayores viscosidades que las de partículas gruesas, con excepción de aquellas partículas que poseen propiedades magnéticas con las que ocurre lo contrario, como es el caso de las pulpas de maghemita, según lo expresado por Garcell (1994).

En un trabajo realizado por Garcell (1992), se confirmó que las pulpas acuosas de laterita (limonita) preparadas con partículas mayores de 90  $\mu$  m no logran formar una estructura y muestran un comportamiento newtoniano; en cambio, las preparadas con mezclas de partículas inferiores a 50  $\mu$  m forman estructuras que comunican a la suspensión propiedades plásticas, pudiendo ajustarse su curva al modelo de los plásticos Bingham.

Las pulpas de lateritas industriales muestran una distribución granulométrica en la que predominan las partículas con tamaños inferiores a 43  $\mu$  m , de ahí el comportamiento típico de los plásticos Bingham de estas suspensiones.

### Efectos de la temperatura.

En general, en la mayoría de los líquidos y suspensiones se ha observado una disminución de la viscosidad con el incremento de la temperatura. Se ha comprobado que la disminución de la viscosidad puede deberse a dos efectos, según Garcell (1993), a) disminución de la viscosidad del medio dispersante; b) debilitamiento de las estructuras formadas por las partículas al aumentar la temperatura.

#### Efecto de la composición mineralógica.

Se ha comprobado que las pulpas de mineral laterítco pueden presentar un amplio rango de los valores del punto izo eléctrico (i.e.p.) o de su punto de carga cero (p.z.c) en la dependencia de su composición mineralógica, según lo expresado por Garcell (1993).

Este hecho hace que la viscosidad y estructuración de las pulpas de laterita sean, a su vez, una función del pH.

Los cambios de la composición mineralógica, también influyen sobre las características de sedimentación de las suspensiones de laterita y sobre la estabilidad de las pulpas.

#### Efecto de la concentración de sólidos.

Por lo general, en las suspensiones diluidas ( con valores de concentración volumétrica , $\phi$ , inferior a 10 % en peso de sólidos) el comportamiento de las suspensiones es newtoniano . A medida que aumenta la concentración de sólidos, se incrementan las interacciones de las partículas, con la tendencia a formar flóculos, agregados y estructuras. Como consecuencia de esto, a concentraciones moderadas, la suspensión puede alcanzar el comportamiento Seudoplástico. A concentraciones más altas, los efectos hidrodinámicos son menos importantes, y , dado que las partículas se hayan más cerca una de otras, se forman estructuras tridimensionales que le comunican a la dispersión propiedades plásticas.

En trabajos realizados por Garcell (1993) y por Cerpa y Garcell (1997) con pulpas de lateritas pudo determinarse que, para concentraciones menores de 18 % en peso de sólidos, estas pulpas exhiben un comportamiento Seudoplástico que es prácticamente independiente de su composición mineralógica. Y para contenidos de sólidos en el orden de 22 % en peso se manifiestan propiedades plásticas, y a medida que se incrementa la concentración hasta 45 %, las viscosidades aumentan, dependiendo cada vez más de la mineralogía del sólido. En estas condiciones, las curvas de flujo, pueden ser ajustadas, en algunos casos, al modelo de Bingham, o al de Bulkley – Herschel, en otros.

#### Efecto del pH.

En las suspensiones con características coloidales, se manifiestan grandemente los fenómenos electrocinéticos y otras propiedades superficiales. En las suspensiones minerales, en la que la distribución de tamaño muestra altos volúmenes de partículas finas se manifiestan también estos fenómenos, los cuales son altamente dependientes del pH de la suspensión. Para pH cercanos al punto isoeléctrico, el equilibrio atracción – repulsión entre partículas se desplaza hacia la atracción debido al predominio de las fuerzas de Van der Waals. En estas condiciones la suspensión incrementa su inestabilidad y muestra los máximos valores de viscosidad, debido a la formación de estructuras más fuertes. A pH alejado del i.e.p., son

más importantes las fuerzas de repulsión de carácter electrostático entre las partículas.

Es por ello que las partículas se dispersan más fácilmente, y la suspensión adquiere más estabilidad y exhibe menores valores de viscosidad.

Otro aspecto importante está relacionado con la adsorción de iones en la superficie del sólido, lo cual provoca variación de la carga superficial de las partículas y desplazamiento del i.e.p. y de p.z.c , según Garcell (1994). En general, cuando no hay adsorción específica de iones, los valores del i.e.p y de p.z.c coinciden, sin embargo, cuando se adsorben cationes y aniones los valores del i,e,p y p.z.c experimentan desplazamiento hacia pH más ácidos o más básicos, trayendo consigo cambios en el comportamiento de la suspensión.

El pH juega un papel importante en el proceso de sedimentación de las pulpas crudas. La experiencia indica que en el agua de reboso el pH disminuye su valor con el tiempo de contacto con el mineral laterítico. Novoa (1976) propone controlar el pH de la pulpa para lograr valores óptimos de 5,5 – 5,7 con el objetivo de lograr una mejor sedimentación y expone que a valores mayores o menores de ese rango se observa un efecto negativo en la velocidad de sedimentación. Los valores de pH alcanzados en este trabajo difieren de los obtenidos por Valdés (1983), quien estudió los fenómenos químicos coloidales de la pulpa laterítica, determinando el rango óptimo de pH entre 6,6 – 7,6, cercano al punto izoeléctrico, lo que ha sido comprobado por otro trabajo, entre los que se pueden mencionar el de Ferro (1984); sin embargo Cerpa (1997) demuestra que el punto izoeléctrico se alcanza a pH= 4,8 - 8,4.

Esta diferencia puede estar dada por las condiciones de trabajo utilizadas en cada caso y las características del mineral . Novos (1976) se limitó al estudio de las condiciones de sedimentación variando el pH en un rango muy estrecho (4-62). Por otra parte Valdés (1983) realizó un estudio más profundo a través de mediciones del potencial electrocinética de la partícula por los métodos de macro y microelectroforesis en un intervalo de pH entre 0,3 y 12,4, estableciendo dos puntos izoeléctricos a pH entre 2 y 7 respectivamente; entre estos dos valores , la superficie de la partícula tiene

carga positiva . Para un valor de de pH inferior a 2 o superior a 7, las partículas se cargan negativamente . Cerca del punto izoeléctrico a pH de 6,6 – 7 , no existen fuerzas electrostáticas capaces de separar las partículas entre sí y estas tienden a regularse con la formación de agregados que sedimentan a mayor velocidad ; es a estos valores de pH que se alcanzan las mejores condiciones de sedimentación de la pulpa cruda. Este trabajo establece el valor de pH en que las pulpas sedimentan mejor; pero no tiene en cuenta la procedencia o tipo del mineral de la pulpa, o sea su composición granulométrica, mineralógica y química.

Beyris (1997) definió un nuevo indicador denominado Índice de Sedimentación (Ised) como la relación metal ligero/ metal pesado para efectuar la homogenización de los minerales lateríticos, no alterando la ley del mineral para las tecnologías ácidas permitiendo predecir el comportamiento de la sedimentación, teniendo en cuenta la relación existente entre los factores fundamentales que influyen como sistema en el proceso, lográndose porcentajes de sólidos a 46,61 %.

Se verifica experimentalmente en el caso del índice de sedimentación (Ised) con valores menores que 0,22 para la homogenización de los materiales laterícos y del Silicato de Sodio como un electrolito en concentraciones (0,001 – 0,0085) g/l, que constituyen vías para el mejoramiento de las condiciones de sedimentación en la planta de espesadores de pulpa de la Empresa "Comandante Pedro Soto Alba" de Moa.

# 1.6 Consideraciones generales sobre las colas de la " Empresa Comandante Ernesto Che Guevara".

La información bibliográfica consultada sobre las características de las colas puede ser resumida de la forma siguiente: Herrera y colaboradores del Centro de Estudios Aplicados al Desarrollo Nuclear (1994), efectuaron una investigación sobre la caracterización de productos parciales y finales de la Empresa René Ramos Latourt "Nicaro". En este estudio se determinó que la composición química de las colas de Nicaro es bastante similar a la que se obtiene actualmente en la Empresa Ernesto Che Guevara de Moa; sin embargo, se observan grandes diferencias en su composición mineralógica , por ejemplo, en todas las muestras analizadas, la fase principal es la

magnetita con un contenido de 64 – 90% en peso. En cambio en el proceso CARON de Moa la fase principal es la maghemita con un contenido en el orden de 63 – 83 % en peso, esta diferencia se atribuye a las modificaciones tecnológicas producidas en la fábrica Ernesto Che Guevara de Moa, que puede haber ocasionado la oxidación de la magnetita transformándose esta en maghemita , teniendo en cuenta que una vía tanto natural como sintética de obtención de maghemita es precisamente mediante la oxidación de la magnetita . (Ver anexo 1 - tablas 1y 2).

#### 1. 7 Propiedades magnéticas de los materiales.

Muchos óxidos de hierro exhiben en mayor o menor grado propiedades magnéticas según lo expresado por Costa (1996). Estos materiales pueden adquirir las propiedades magnéticas por la acción del campo magnético natural de la Tierra ó del campo aplicado de un equipo. Dependiendo de la naturaleza del óxido de hierro (las características de su estructura atómica), de la temperatura, de la intensidad del campo magnético aplicado (el campo magnético natural de la Tierra es aproximadamente de 0.2 Gauss ) y del tamaño y forma de las partículas, las características magnéticas adquiridas de uno a otro material. Así, por ejemplo, la pueden variar hematita a 260°k es antiferrimagnética y a 956° k es débilmente ferrimagnética. Así mismo, la maghemita a tamaños menores de 10 nm es súperparamagnética(no exhibe propiedades magnéticas) en cambio, para dimensiones mayores, a temperatura ambiente, es ferrimagnética.

Entre los óxidos de hierro a temperatura ambiente, y para dimensiones mayores a 10 nm, la maghemita y la magnetita son las que exhiben propiedades magnéticas apreciables (ferromagnéticas), siendo mas notables estas características en la magnemita. Las partículas de estos minerales poseen formas elipsoidales en rotación y constituyen pequeños imanes naturales.

En el trabajo de Garcell y col. 1998 se determinaron las características reológicas y magnéticas de suspensiones de nanopartículas de maghemita de diferentes formas, tamaño y distribución de tamaño. Se observa que sus fuerzas coercitivas y los magnetismos máximos y remanentes adquiridos se incrementan con el aumento del tamaño de las partículas. Ello provoca un

incremento en la viscosidad y en la magnitud del  $\tau_{0,}$  contrariamente a lo que ocurre con los materiales no magnéticos en los que sus propiedades reológicas disminuyen con el aumento del tamaño de sus partículas.

No se han encontrado trabajos relativos a los aspectos tratados para las suspensiones de las cola del proceso CARON. Sin embargo, dado el hecho de que en este estudio se ha podido determinar que la fase mineralógica principal de estas pulpas es la maghemita – magnetita, es de esperar que exhiba propiedades magnéticas y comportamientos similares que las suspensiones de esos minerales puros.

# 1.8 Parámetros de hidrotransporte en el flujo de hidromezclas por tuberías.

El análisis de las investigaciones realizadas por diferentes autores Dyurano (1952), Ibenskii (1957), Kalinin (1965), Mijailova (1966), Skelland (1970), Karasik (1972), Gusarov (1972), Karasik (1972), Pérez (1970,1983,1984), Parnoskaya (1976,1987), Smoldriev (1980, 1986, 1989), Nuruk (1979,1985), Shekadeshvarsheischili (1981), Alexandro (1986), Izquierdo (1995), Darby (2000), G y R (1995), Suárez (1998), Díaz (1999) muestran que las mismas están dedicadas fundamentalmente a:

1.- Estudio de la estructura dinámica de diferentes flujos de suspensiones y de las peculiaridades de los regímenes de movimiento del flujo portador de partículas sólidas. Sobre esta base se construye el modelo físico y se deduce la ecuación de equilibrio dinámico y la obtención de la dependencia de cálculo a partir de la utilización de datos experimentales.

 2.- Estudio de las regularidades del movimiento de los flujos con partículas en suspensión, la influencia de partículas sólidas sobre su estructura cinemática y establecer el enlace de las características locales e integrales.

3.- Determinar la magnitud de la energía que el líquido le trasmite a las partículas sólidas de diferentes categorías. Este método se fundamenta sobre el principio de considerar las fuerzas de interacción del líquido y las partículas sólidas suspendidas en él.

De lo explicado anteriormente se observa, que la solución teórica de los principales problemas del hidrotransporte es posible obtenerla solo de las ecuaciones de la hidrodinámica. De igual forma, en relación con la

complejidad de obtención de hidromezclas, se puede utilizar la teoría semiempírica, la que se fundamenta sobre diferentes representaciones del movimiento del flujo de las hidromezclas y de la variación de la influencia de las partículas en el perfil de distribución de velocidades. Por ello, el segundo aspecto encuentra su aplicación práctica y ha obtenido desarrollo en trabajos realizados por la mayoría de los investigadores.

Como es conocido, durante el movimiento de un líquido homogéneo a pequeñas velocidades por la sección de la tubería se subordina a la ley parabólica.

$$V = V_{max} \left[ 1 - \left(\frac{r}{R}\right)^2 \right]$$
 (1.9)

Donde:

R – radio de la tubería

r - distancia del eje.

 $V_{máx}$  – velocidad máxima para r = 0.

En el régimen turbulento, la distribución de velocidades para líquidos homogéneos se describe por la ley logarítmica propuesta sobre la base de la teoría semi empírica de Prandtl – Karman.

$$\frac{V_{max} - V}{V_*} = \frac{1}{\chi} \cdot \ln \frac{r}{r - y}$$
 (1.10)

Donde:

 $\chi$  - constante de Karman;

. /

y – distancia desde la pared del tubo hasta el punto analizado;

$$V^* = \left(\frac{\tau}{\rho}\right)^{\frac{1}{2}}$$
 - velocidad dinámica, donde:

τ

au - tensión de rozamiento en la pared del tubo.

En varios trabajos según, Smoldriev (1966, 1980), Karasik (1976), Agustín (1983), Vennard (1986), muestran que la misma se muestra que debido a la presencia mediante la existencia de gran cantidad de partículas pequeñas puede variar el régimen de flujo de la suspensión. Desplazándose a lo largo de la línea del flujo con velocidades prácticamente igual a la velocidad del

líquido, disminuyendo la resistencia. Las partículas de tamaños medios, bajo la acción de diferentes fuerzas se separan de ellas y las partículas más grandes se separan de la frontera sólida, lo que provoca la destrucción de la estructura del flujo, varían las características de las pulsaciones y la intensidad de las turbulencias. Como resultado de esto surge el desplazamiento transversal de las partículas sólidas, variándose la interacción mecánica en el flujo y modificándose el perfil de distribución de velocidades en comparación con un líquido homogéneo.

Smoldriev y Col.( 1980), sobre la base del análisis de los resultados obtenidos en diversos trabajos realizados por ellos y por otros autores con hidromezclas de diferentes materiales de granulometrías y densidades variadas (arcilla, carbón, caolín, desechos de la industria metalúrgica, materiales de la construcción y otros), a distintos regímenes de flujo, rangos de temperatura y diámetros de las tuberías lograron establecer y resumir algunas regularidades en las características del flujo de los productos, Así, se pudo comprobar que, no obstante las diferencias observadas en las propiedades físico – mecánicas de los materiales y en las características del medio dispersante, existen peculiaridades comunes que describen el flujo de las hidromezclas estudiadas, en relación con sus comportamientos reológicos con las pérdidas hidráulicas, con los perfiles de velocidad en diferentes regímenes de flujo ( estructural, transitorio y turbulento).

Los resultados obtenidos por pulpas formadas por materiales de diferentes formas, tamaño y granulometría, no responden a una expresión única, lo que a obligado a dividir las hidromezclas en diferentes grupos, la más utilizada es la (159), que clasifican estas pulpas según el tamaño de las partículas de la siguiente forma:

| Hidromezclas      | Tamaño, mm       |
|-------------------|------------------|
| Muy gruesas       | 10 – 300 mm      |
| Gruesas           | 2/3 – 10 mm      |
| Dispersas gruesas | 0,15 – 2/3       |
| Dispersas finas   | 0,05 - 0,15 /0,2 |
| Estructurales     | 0,05 – 0,005     |
| Coloidales        | 0,005            |

Esta clasificación en nuestra opinión más cerca que cualquier otra responde a las tareas de hidrotransporte y refleja muy bien múltiples resultados experimentales y será la utilizada en este trabajo.

A partir de esta clasificación las pulpas de hidrotransporte por el proceso CARON, se encuentran en el grupo de las finamente dispersas hasta las coloidales y se hace necesario investigar los factores que inciden en la variación de las propiedades físico – mecánicas de las hidromezclas por las posibles influencias que pueden tener las características reológicas en los parámetros de hidrotransporte y en particular factores tales como: concentración, tamaño, granulometría, composición mineralógica y otras.

Las investigaciones experimentales realizadas hasta el presente en hidrotransporte de minerales sólidos se refieren fundamentalmente a la determinación de las pérdidas específicas por rozamiento, la velocidad crítica, densidad de la pulpa y régimen racional que en última instancia determinan los indicadores técnico – económico de hidrotransporte.

El régimen con que se puede transportar estas mezclas varía desde el puramente laminar hasta el puramente desarrollado, en la (figura 2, curva 1 del anexo1) se observa, que la hidromezcla se desplaza prácticamente como si fuera un cuerpo sólido y ocupa toda la sección de la tubería.

Con el aumento de la velocidad del movimiento los enlaces estructurales no logran restablecerse y el flujo ocurre con una viscosidad constante y pequeña, prácticamente no se rompe la estructura. A este régimen se le llama régimen de flujo estructural. Para la curva de flujo, la recta del flujo i = f(v) se expresa por la ecuación lineal Svedova – Bingham, lo que posibilita calcular el régimen de flujo establecido (el perfil de velocidades establecidas en condiciones de desplazamiento homogéneo). Señalamos, que para valorar este régimen se puede utilizar además el parámetro de viscosidad efectiva  $\mu_e$ , la cual disminuye con el incremento del gradiente de velocidad. En este caso los cálculos se complican. Unido a esto , la utilización del esquema indicado de flujo viscoso plástico posibilita con facilidad resolver las tareas

prácticas. Para describir el flujo de hidromezcla en este régimen se utilizan

dos parámetros independientes: la viscosidad  $\eta$  y la tensión dinámica limite o limite dinámico de fluidez  $\tau_d$ .

Durante la transición del flujo laminar al turbulento, el valor de la viscosidad estructural disminuye con el aumento de las tensiones tangenciales (o el gradiente de velocidad), sin embargo cuando se alcanza el limite dinámico de fluidez, la viscosidad estructural permanece prácticamente constante. Por cuanto en la práctica en la mayoría de los casos se logra el régimen estructural, lo que mayor interés representa es el estudio de la influencia de la concentración de sólido, temperatura, sus propiedades superficiales y otros factores que influyen en los parámetros reológicos

La curva 2 (figura 2b del anexo 1), caracteriza la distribución de velocidades en un flujo de una suspensión de caolín, correspondiente al régimen de movimiento estructural. El perfil de velocidades justifica la existencia de zonas características en el flujo cercano a la pared con estructura y distribución de velocidades parabólicas, y la zona central con una estructura constituida (núcleo del flujo); de igual forma mantiene una deformación pequeña. A medida que aumenta la velocidad media, el espesor de la zona cercana a la pared con estructura destruida se aumenta. Perfiles de velocidades semejantes se han obtenido para suspensiones de arcilla, carbón, materiales de la construcción, etc. Ellos corroboran; que el régimen de flujo plástico viscoso de Svedova – Bingham corresponde con el perfil de velocidades real. El análisis preliminar demuestra; que el espesor de la capa cercana a la pared con estructura destruida aumenta con rapidez, pero el grado de destrucción de la estructura de la hidromezcla se encuentra en dependencia directa a las dimensiones del flujo.

Con el aumento del gradiente de velocidad en el flujo la hidromezcla entra en un proceso de destrucción de la estructura, después del cual el aumento posterior del gradiente de velocidad no provoca una caída considerable de la viscosidad. Es necesario señalar, que para una serie de mezclas el limite de destrucción de la resistencia ocurre en el régimen transitorio, cuando el flujo se mueve como un líquido homogéneo con una viscosidad mínima  $\mu_{min.}$ . La zona lineal de la curva reológica de la mezcla estructural, fluye a tal régimen

que pasa, a través del inicio de la ordenada; por eso la viscosidad del sistema se determina como newtoniano. Esta misma viscosidad se mantiene en el régimen turbulento.

Cuando es alta la viscosidad del medio (es alta la concentración de la fase sólida) con frecuencia no se presenta la posibilidad de alcanzar un grado limite de destrucción de la estructura antes de que aparezca la turbulencia o la destrucción del flujo suave. Por eso para algunas

hidromezclas de alta concentración no existe el régimen turbulento. Así, las mediciones realizadas con suspensiones de arcilla demuestran un paso directo del régimen estructural al régimen de flujo turbulento sin pasar por la zona considerada de velocidades transitorias (o existe una zona muy pequeña).

Esta peculiaridad es característica para suspensiones con elevado valor de concentración de la fase sólida y un alto valor de  $\tau_0$ . Este factor justifica también los experimentos realizados con suspensiones de polvo y granos de minerales.

En algunos casos, mediante el movimiento de suspensiones fibrosas (de masa de papel, turba, sedimentos de agua subterráneas a pequeñas concentraciones) se ha observado la intersección de las curvas de flujo de la suspensión con las curvas del agua i =f(v); es decir en algunas zonas las curvas i =f(v) se distribuyen por debajo, fundamentalmente como resultado de la disminución de la densidad del medio. Sobre el régimen de movimiento de tales suspensiones se puede juzgar por los datos medidos por E.Gaize, X.lanke , representado en (figura 5, anexo 1), donde , se observa un paso rápido del régimen estructural al régimen de flujo turbulento, por ejemplo las curvas 2 - 4. Ello se explica por la variación de las características del material (desecho de papel cartón y otros) cuando se le adiciona agua hasta alcanzar una concentración volumétrica 8.6 %.

# Análisis del transporte hidráulico en el proceso carbonato amoniacal en la Industria del níquel.

El proceso carbonato amoniacal en la Empresa Comandante Ernesto Che Guevara de Moa, el transporte de pulpa se realiza desde los tanques de contacto en la entrada de la planta de lixiviación hasta la evacuación final de las colas.

En el proceso de transportación de acuerdo con la densidad de las pulpas y con una misma granulometría varían los parámetros de transportación y su régimen de trabajo, esta situación requiere de un estudio reológico para la determinación del tipo de hidromezclas, por otra parte la presencia de amoníaco en las colas y su alto grado de solubilidad Daniel, Alberty (1963), hace que con presiones relativamente bajas la cantidad disuelta en la pulpa sea relativamente alta, la caída de presión provoca el desplazamiento de una fase gaseosa que pueda ocupar una sección que hace variar los parámetros de flujo. En la práctica se crea además de la fase sólida y líquida, una fase gaseosa adicional, en esencia el flujo de la hidromezcla en la planta de recuperación de amoníaco está afectado, tanto por las posibles propiedades reológicas de las mismas como por la presencia de la fase gaseosa.

Otra forma de aplicación del transporte hidráulico se encuentra en la Empresa Comandante Pedro Soto Alba, donde se utiliza el transporte de pulpas lateríticas por gravedad y a presión. El transporte por gravedad se realiza desde la planta de preparación de pulpa hasta los espesadores de pulpa, con una suspensión de 25 – 30 %de peso en sólido, por una tubería de hormigón de 610 mm de diámetro y 5129 m de longitud. El transporte a presión se realiza desde los espesadotes de pulpa hasta la planta de lixiviación con ayuda de bombas centrífugas, a través de una tubería de 460 m de longitud y 508 mm de diámetro.

Shichenko (1951) Sobre la base de las investigaciones experimentales estableció; que en el movimiento de mezclas de arcilla por tuberías se presentan dos regímenes de flujo, el estructural y turbulento. Como resultado de las investigaciones fue establecido, que la distribución de velocidades por la ecuación de Svedova – Bingham, ocurre solo a velocidades del flujo hasta V=0.6 m/s.

Ivenski (1957) mediante el estudio de los regímenes de movimientos de las mezclas de materiales de la construcción por tuberías de diferentes diámetros estableció, que existe el régimen estructural en los limites de velocidades hasta 0.5 m/s, se observa el régimen estructural, que se acompaña de la

rotación de los granos, lo que conlleva a la destrucción de los enlaces estructurales.

En el trabajo de lakovlev (1962), se exponen los resultados de estudios experimentales, los cuales demuestran que, el movimiento de líquidos estructurales por tuberías

se caracteriza por la presencia de un núcleo del flujo, que se mueve con velocidad constante como un cuerpo compacto.

Pakrovskaya (1985), realiza un amplio estudio técnico – práctico donde abarca temas muy importantes y novedosos entre los que se destacan: características, parámetros y regímenes de transportación de hidromezclas de diferentes grados de saturación; métodos para la preparación de pulpas para el hidrotransporte, desgaste hidroabrasivo de los sistemas de tuberías durante la transportación de materiales abrasivos; fiabilidad del trabajo de las instalaciones de hidrotransporte; métodos de control y regulación de los parámetros de hidrotransporte de los golpes hidráulicos; valoración económica de la efectividad del transporte hidráulico.

Pérez Barreto; en su trabajo [1979], sobre la base de las investigaciones teórico experimentales y el análisis de otros autores determinó los parámetros y estableció los regímenes racionales de hidrotransporte de

minerales de hierro y concentrados . Elaboró las recomendaciones sobre la modelación de las suspensiones, selección de los regímenes efectivos y la metodología para la determinación de los parámetros de materiales sólidos de alta densidad en flujos de alta densidad ( hasta 40 % de sólido por volumen).

Suárez en su trabajo 1998, hace referencia a la elaboración del modelo físico – matemático del movimiento de suspensiones de serpentinita blanda por tuberías, basado en los resultados de las investigaciones de las propiedades reológicas, la determinación de las regularidades de la variación de los coeficientes de resistencia hidráulica en dependencia de la concentración másica en el intervalo de 40 a 80 % en régimen laminar; la determinación de las pérdidas específicas de presión para el movimiento de dichas suspensiones en régimen turbulento; la determinación de las

ecuaciones para la obtención de la velocidad crítica y la velocidad límite de caída de los granos de serpentinita dura.

Izquierdo en su trabajo (1989) sobre la determinación de los parámetros y regímenes de hidrotransporte de mineral laterítico aplicable a

las condiciones del proceso productivo de la Empresa comandante Pedro Soto Alba determinó las propiedades físico – mecánicas de las hidromezclas, formuló el modelo físico – matemático del flujo de las pulpas lateríticas; comprobó que durante el flujo dependiendo de la velocidad de las pulpas y de la concentración del sólido, se presentan los regímenes estructural, transitorio y turbulento, obtuvo las dependencias para determinar el coeficiente de resistencia hidráulica para el movimiento del régimen estructural y las pérdidas hidráulicas durante el movimiento de la hidromezcla en régimen turbulento.

1.9 Requerimientos energéticos para el transporte de hidromezclas sólido - líquido no newtonianas por tuberías. Balance de energía mecánica.

Ecuación de balance de energía mecánica.

Para el diseño de sistemas de tuberías se requiere conocer la relación entre los gradientes de presión (ΔP/L), requeridos para lograr flujos volumétricos, (Q), en un intervalo de diferentes diámetros, (D), del tubo, a distintas temperaturas de operación y diferentes propiedades físicas de los fluidos.

Las expresiones que relacionan las variables señaladas en el régimen laminar, para los modelos reológicos más difundidos en la literatura, así como las limitaciones que puedan tener en su precisión en los sistemas de flujo con diámetros relativamente grandes. De ahí, que, en los cálculos de ingeniería, se prefiera hacer uso de las expresiones que relacionan el factor de fricción de Fanning con el número de Reynolds y con otros números adimensionales, tanto en régimen laminar como en turbulento Skelland (1970), Rosabal (1988).

Una de las leyes fundamentales de la mecánica de los fluidos se expresa mediante la <u>ecuación de balance de energía mecánica</u> aplicada al sistema de flujo en cuestión Skelland (1970), Rosabal (1988). En la mayoría de los textos de ingeniería química, el balance de energía mecánica para

condiciones estacionarias de flujo se conoce como ecuación de Bernoulli, y se ilustra sus aplicaciones para el caso particular del flujo newtoniano.

En el caso específico del flujo de suspensiones minerales no newtonianas también se aplica el balance de energía mecánica en un sistema de flujo, al cual entra el fluido por un plano (1) y sale por un plano (2).

$$\frac{Z_1 \cdot g}{g_C} + \frac{P_1}{\rho} + Ec_1 = \frac{Z_2 \cdot g}{g_C} + \frac{P_2}{\rho} + Ec_2 + W_S + \Sigma F$$
 (1.11)

Donde:

 $Z_g$  - Es la energía potencial para una altura vertical referida a un plano - horizontal de referencia tomado arbitrariamente, m<sup>2</sup>/s.

 $\frac{P}{\rho}$  - Es la energía de presión hidrostática, m<sup>2</sup>/s<sup>2</sup>.

 $E_{C}$  - Es la energía cinética medida por unidad de masa, m<sup>2</sup>/s<sup>2</sup>.

 $W_{S}$  – Es el trabajo por unidad de masa (como trabajo por una bomba sobre el fluido).

 $\Sigma$ F – Es la energía mecánica convertida a energía térmica como resultado de las fricciones del fluido, m<sup>2</sup>/s<sup>2</sup>.

 $\Sigma F = \frac{\Delta P_f}{\rho}$  + (pérdidas por fricción por unidad de masa debido a los efectos de

Para el flujo no newtoniano, los términos  $E_C$  y  $\Sigma F$  dependen de la naturaleza reológica del fluido, y, por tanto, de los parámetros característicos del modelo reológico que describe la curva de flujo.

El término de pérdidas de fricción,  $\Sigma$ F, puede estimarse mediante la definición siguiente [4].

$$\Sigma F = \frac{1}{2} \cdot \left\langle V \right\rangle^2 \cdot e_V \quad \dots \tag{1.13}$$

En la que  $e_V$  (adimensional) es el <u>factor de pérdidas de fricción</u>, el cual es una función del número de Reynolds y de las relaciones geométricas del sistema de flujo.

Para el flujo por tuberías rectas circulares,

$$e_V = 4f\left(\frac{L}{D}\right) \dots (1.14)$$

Donde f es el coeficiente de fricción de Fanning.

Combinando las expresiones (1.14) y (1.15), se obtiene:

$$\Sigma F = 2f \left(\frac{L}{D}\right) \frac{\langle V \rangle^2}{g_C} \quad \dots \tag{1.15}$$

La caída de presión en una tubería para materiales que siguen el modelo de Bingham (plásticos ideales) se expresa en términos de variables de operación y de los parámetros reológicos y geométricos del sistema de flujo:

$$\Delta P = \phi \left( D, L, \upsilon, \rho, \mu_p, \tau_o, g \right) \quad \dots \tag{1.16}$$

Aplicando el análisis dimensional y la correspondiente manipulación de los términos, se obtiene una relación entre variables adimensionales que agrupan las variables de la expresión 1.17. Así, se llega a la expresión que relaciona al factor de fricción (f)con los números de Reynolds (Re) y de Hedstrom (He) Skelland (1970) y de Froude (Fr):

Donde el Re=
$$\left(\frac{D\nu\rho}{\mu_p}\right)$$
; He = $\left(\frac{D^2\rho\tau_0}{{\mu_p}^2}\right)$ ; Fr = $\left(\frac{\nu^2}{gD}\right)$ 

Para hidromezclas que no contienen gases y tuberías llenas del fluido completamente, el Fr no tiene influencia. Por tanto, para esos casos, la ecuación (1,19) se puede representar en un gráfico de f vs Re con He como parámetro en la región laminar. Para flujo altamente turbulento se obtiene una curva prácticamente independiente del número de He. La región laminar y la turbulenta y es función del Re y del He.

En un trabajo publicado por Darby (2001) se proponen las expresiones que describen la ecuación (1,19) para las tres regiones:

Región Laminar

$$F_{L} = \frac{16}{\text{Re}} \left[ 1 + \frac{He}{6\text{Re}} - \frac{1}{3} \frac{He^{4}}{3f^{3}\text{Re}^{7}} \right] \dots (1.18)$$

Región turbulenta desarrollada:

$$F_{T} = \frac{10^{c}}{\text{Re}^{0.193}}$$

$$C = -1,378 \left[ 1 + 0.14e^{-2.9.10^{-5}} He \right] \qquad (1.19)$$

Región de transición

$$F = \left(f_{L}^{\beta} + f_{T}^{\beta}\right)^{1/\beta} \qquad (1.20)$$
$$\beta = 1,7 \frac{40000}{R_{e}}$$

El sistema de ecuaciones (1.19,1.20,1.21) se describe gráficamente en la (figura 5 del anexo1)

Para sistemas trifásicos (sólido – líquido – gas) es necesario tener en consideración el numero de Fr. Este tipo de sistema es poco tratado en la literatura, sobre este aspecto se abordará en el próximo epígrafe.

#### 1.10 Características del flujo de hidromezclas trifásicas por tuberías.

En muchas industrias químicas y metalúrgicas se manipulan suspensiones trifásicas (conformadas por una mezcla sólido-líquido-gas). En este epígrafe se analizan los modelos físicos sobre sistemas trifásicos que fluyen por tuberías es la única fuente bibliográfica encontrada que aborda esta temática, es el trabajo de Mijailov (1994), ya que no se dispone de otras fuentes sobre este tema. El tema de flujo trifásico es poco tratado en la literatura.

Las experiencias demuestran que las estructuras del movimiento de las mezclas dependen de la fracción volumétrica del gas y de la velocidad de la fase líquida en la mezcla y es independiente de la forma de entrada del gas en la tubería.

En el caso de velocidades de la fase líquida, por tuberías, que no excedan de 3 - 3.5 m/s, se pueden formar las siguientes estructuras estables del movimiento de la hidromezcla trifásica.

**Estructura emulsionada:** Está compuesta por burbujas de gas relativamente pequeñas, la cual está más o menos uniformemente distribuida en los limites del área del flujo de la hidromezcla. Esta estructura es posible cuando la fracción volumétrica del gas en la mezcla es relativamente baja.

En una primera aproximación se considera, que la estructura emulsionada en tubería vertical será estable cuando.

 $C \le 0.05 F_r^{0.2}$  (1.21)

Donde: C – fracción volumétrica del contenido de gas en la mezcla.

Fr – el número de Froude.

**Estructura lamelar** ( también se le denomina obturada) se representa por capas alternadas de la fase líquida y del gas, las cuales ocupan prácticamente toda la sección de la tubería. El gas, en este caso se mueve con grandes burbujas, las cuales ocupan toda la parte central de la sección de la tubería y se asemeja por su forma a un proyectil , que atraviesa la fase líquida. Las partículas sólidas, contenidas en la mezcla, por la acción de las burbujas de aire se acumulan junto con el agua a las paredes de la tubería.

La estructura lamelar en dependencia del volúmen contenido de aire y la velocidad de la mezcla posee algunas peculiaridades con diferentes características de flujo.

El limite superior de la existencia de la estructura lamelar estable en una tubería vertical se puede considerar para

 $C = 0.5 F_r^{0.1}$  (1.22)

En las tuberías horizontales, cuando es constante la entrega de gas en el flujo de obturación estacionario, se observa que ocurre la separación de la mezcla: la parte superior (no mayor de la mitad) de la tubería esta ocupada por gas, y la inferior - con mayor velocidad se mueve la hidromezcla no gasificada.

Estructura de barra o película. Es característica para mezclas con alto contenido de gas. El gas ocupa completamente la parte media de la sección
por toda la tubería, las fronteras entre diferentes burbujas de la estructura lamelar esta destruida, y en la tubería se mueve como si fueran dos flujos independientes: por la parte central – el gas, a lo largo de la pared – el flujo de un anillo fino de la fase líquida. Por el limite superior esta estructura se pude tomar.

 $C = 0.65 F_r^{0.05} \dots (1.23)$ 

#### Resistencia hidráulica durante el movimiento de la mezcla trifásica.

La alta complejidad de la estructura y dinámica del movimiento del flujo de la mezcla trifásica no posibilita por ahora determinar las resistencias hidráulicas por vía teórica. Por eso todas las dependencias para la determinación de las pérdidas de presión durante el movimiento de las mezclas trifásicas poseen un carácter empírico.

Para tuberías horizontales la caída de presión total por unidad de longitud se puede escribir en forma:

 $\Delta P_T = \Delta P_0 + \Delta P_g \quad \dots \qquad (1.24)$ 

Donde  $\Delta P_T$  – caída presión total resultante.

 $\Delta P_o$  – caída presión de la hidromezcla por efectos de fricción.

 $\Delta P_g$  – caída de presión por aceleración de la mezcla como resultado de la expansión del gas.

Según la (ecuación 1.34), la caída de presión en la tubería, para un sistema trifásico, es mayor que para un sistema bifásico sólido – líquido en iguales condiciones de operación debido al efecto que ejerce la presencia y el movimiento de la fase gaseosa.

Como se verá en el capítulo III, al parecer el modelo físico que mejor se ajusta al flujo de las colas es el de estructura lamelar u obturada, de acuerdo con lo observado durante los ensayos experimentales en las tuberías horizontales de la instalación semi - industrial utilizada.

En el estudio realizado por Hurtado (1999), éste hace un análisis y evaluación de las afectaciones ambientales que provocan cada una de las zonas que componen el complejo industrial "Cdte. Ernesto Che Guevara", donde los impacto de mayor influencia se muestran en la figura 6 ,anexo 1)

La instalación de bombeo de los desechos lixiviados (colas) presentan fallos y averías producto al desplazamiento de gases y altas temperaturas, las bombas extraen en estado cavitacional lo que provoca ruidos, bajos rendimientos de la instalación, consumo de energía elevado y desprendimiento de gases al entorno que afecta directamente la salud de los trabajadores.

#### 1.11 Conclusiones del capitulo I.

- En las etapas de explotación de la instalación industrial de hidrotransporte se confrontan dificultades con el trasiego de los desechos lixiviados (colas del proceso CARON), así como problemas de eficiencia tecnológica de dicha instalación.
- En la bibliografía consultada se hace referencia en general, al estudio de las propiedades superficiales y de flujo de suspensiones acuosas con partículas de Maghemita, pulpas minerales (de lateritas férricas, bentonitas, arcilla, cemento, etc.) así como los polímeros. No se ha encontrado información sobre estos aspectos para los desechos lixiviados (colas) de las industrias que trabajan bajo la tecnología del proceso CARON, con las cuales se han confrontado ciertas dificultades en su manipulación y transportación con los sistemas de hidrotransporte existentes en las empresas que operan con el mencionado proceso tecnológico.
- En la literatura no reencontró información sobre la influencia que tienen diferentes factores tales como: propiedades magnéticas, granulometría, mineralogía concentración de la fase sólida, temperatura y pH de la suspensión sobre el hidrotransporte de las suspensiones de las colas y sus requerimientos energéticos.
- En la bibliografía consultada es insuficiente la información acerca del flujo con tres fases de las colas a través de tuberías de sistemas con tres fases, de ahí la necesidad del estudio experimental de este sistema, en particular.
- Entre los óxidos de hierro, la magnetita y la maghemita son los minerales que a temperatura ambiente exhiben propiedades magnéticas

apreciables y sus partículas se comportan como pequeños imanes naturales, no se han encontrado trabajos que traten este aspecto del magnetismo para las colas del proceso CARON. No obstante los resultados obtenidos por varios autores sobre las características magnéticas de las suspensiones de maghemita sirven como punto de referencia para el análisis de las pulpas de cola en este aspecto.

 Existe un manejo ambiental inadecuado de las instalaciones de hidrotransporte y deposición de las colas durante todo el periodo de explotación, que ha originado afectaciones ambientales severas relacionadas con el vertimiento de residuales sólidos (colas del proceso CARON), así como emisiones a la atmósfera de grandes volúmenes de material particulado (polvo) y gases, fundamentalmente amoniaco y dióxido de carbono.

#### 1.12. Planteamiento del problema.

El estudio bibliográfico ha mostrado una serie de aspectos que no se encuentran actualmente deslucidazo y el análisis realizado muestra la necesidad de efectuar investigaciones teóricas y experimentales que permitan en última instancia obtener una metodología de cálculo técnico y científicamente argumentada para la evaluación de las instalaciones existentes ,el diseño y ejecución de nuevos proyectos.

El sistema de hidrotransporte en la Empresa Ernesto Che Guevara presenta fallas y averías producto al desplazamiento de gases y altas temperaturas, las bombas entran en régimen cavitacional lo que provoca ruidos, bajo rendimiento de la instalación, consumo de energía elevado, lo que incrementa los costos o la amortización.

A los dos problemas señalados anteriormente se le agrega la necesidad de recomendar un régimen de trabajo que evite la cavitación y disminuya los consumos energéticos.

Para lograr el objetivo propuesto es necesario resolver las siguientes tareas:

1 - Análisis crítico de la fuente.

2 – Determinar las propiedades físico – mecánica de las colas.

3 – Elaborar y fundamentar el modelo físico – matemático para el flujo de pulpa de cola a alta temperatura.

4 – Realizar las investigaciones teóricas y experimentales de los principales parámetros hidráulicos de las colas.

5 – Elaborar la metodología de cálculo y proyección del hidrotransporte de las colas a partir del modelo matemático que se obtenga.

6 – Elaborar la recomendaciones en particular definir el régimen de trabajo para la reducción del consumo energético y del gasto de las inversiones.

#### CAPITULO II. CARACTERIZACION DE LAS COLAS.

## 2.1 Áreas del proceso tecnológico que dan origen a las muestras de estudio en el presente trabajo.

En la figura 2.1 se presenta un esquema muy simplificado de la mayor parte del proceso tecnológico de la Empresa Comandante Ernesto Che Guevara de Moa. En el mismo se aprecia la ubicación de la Planta de Recuperación de Amoniaco y del pozo de cola que son las fuentes de obtención de las muestras en la presente tesis.



Figura. 2.1 Esquema de la parte del Proceso Tecnológico donde se obtienen, transportan y almacenan los desechos lixiviados (colas).

#### 2.2 Materiales y técnicas utilizadas.

Se estudiaron las pulpas correspondientes a 6 muestras compósitos industriales de desechos lixiviados (colas) del proceso CARON de la Empresa Comandante Ernesto Che Guevara, que transitan por el proceso de recuperación de amoniaco. Con vistas a obtener dichas muestras (sólido seco)se tomaron distintos volúmenes de sus hidromezclas en el pozo cola de la planta de Recuperación de Amoniaco y en la descarga de las líneas

que llegan al dique, en diferentes períodos con la finalidad de lograr una mayor representatividad de las mismas en la determinación de las características químicas, granulométricas, mineralógicas y magnéticas del mineral residual que se obtiene en las etapas del proceso carbonato amoniacal, donde dicho material es transportado mediante un sistema de flujo. Estos volúmenes de hidromezclas tomados fueron desecados, posteriormente. Los sólidos secos , obtenidos en cada período fueron mezclados debidamente, conformándose así las muestras compósitos que se identificaron como R-1, R-2, etc., según el período que corresponde a cada una de ellas.

Con cada suspensión se realizaron ensayos reométricos a diferentes concentraciones de sólidos (desde 25 - 60 %) en peso, a distintas temperaturas ( en el rango de  $28 - 90^{\circ}$  C) y pH, de acuerdo con las condiciones del proceso productivo de la industria. Para cada concentración y temperatura se realizaron tres réplicas, lo que permitió que los resultados obtenidos sean confiables. Para cambiar los valores de pH, durante la determinación de sus curvas de flujo, se utilizaron soluciones 0.1M de HNO<sub>3</sub> y KOH.

Las mediciones de pH se efectuaron con un peachímetro digital Corming M-140 de fabricación inglesa.

Las muestras fueron caracterizadas mineralógicamente por difracción de Rayos X (según el método de policristalinos), utilizando un difractómetro alemán del tipo HZ6-4; empleando el software SEIFEKT, X – Ray Tecnology, versión 2.26 de 1999(Alemania),

Las características químicas de las muestras se evaluaron empleando técnicas de fluorescencia de Rayos X y espectroscopia de absorción atómica (espectrofotómetro CDN-18).

La morfología y distribución del tamaño de las partículas se estudiaron mediante microscopía óptica a través de un microscopio binocular, tipo Stereomikroskop Technival, microscopía electrónica y por análisis de tamizado por vía húmeda (con juegos de tamices según la serie de Tyler).

Las mediciones de las características magnéticas estáticas de las muestras de cola se realizaron en los laboratorios del Centro Nacional de

Electromagnetismo Aplicado (CNEA) de la Universidad de Oriente, utilizando el magnetómetro vibracional mvm 2000 a la temperatura de  $25 \pm 1^{\circ}$ C.

Para la realización de la caracterización reológica se utilizó un reómetro rotacional del tipo Rheostest 2.1 de cilindros concéntricos de fabricación alemana. Para obtener las curvas de flujo que mejor describen los datos, el modelo reológico y los parámetros reológicos de cada curva, se empleó el método de los mínimos cuadrados mediante el software TIERRA Versión 2.0 de Legrá (2002) y el Microsoft Excel 2000 de Microsoft Office.

Las pruebas de estabilidad fueron realizadas en una instalación de laboratorio que cuenta con un peachímetro digital HANNA-PH 211.

Los ensayos de sedimentación se realizaron en pruebas de banco con probetas de laboratorio graduadas de 1000ml y un cronómetro.

La investigación de los parámetros y regímenes de hidrotransporte de las colas se realizaron en una instalación de escala semi - industrial construida en el ISMM (única de su tipo en Cuba), dotada con el equipamiento, instrumentos de medición y control necesario y en la instalación de hidrotransporte industrial en explotación, ubicada en la Planta de Recuperación de amoníaco.

#### 2.3 Diseño experimental e inferencia estadística.

Para la realización de los experimentos, con vistas a correlacionar el esfuerzo cortante y la viscosidad plástica con el contenido de los materiales y la temperatura, para el caso de los desechos (colas), se planteó un diseño factorial de experimentos **abc**, ver Tabla 2.1,González E.S (1996) y González B.M (1997), con tres réplicas centrales, de la siguiente manera:



Figura 2.2. Variables para los residuos lixiviados (colas).

Se realizaron los ensayos experimentales con cada una de las seis muestras, ellas a diferentes concentraciones de sólidos, temperatura y pH, de acuerdo con las condiciones del proceso productivo de la industria. Para cada caso, se siguió el mismo diseño experimental.

Al analizar el aspecto de la reproducción para decidir cuantas réplicas realizar en cada experimento tuvimos en cuenta que en los posibles modelos que pudieran obtenerse a partir de la matriz experimental se consideraron los que incluyen las relaciones lineales entre las variables y sus interacciones por lo que sería necesario examinar el error experimental de cada variable y de sus interacciones cosa que solo puede hacerse si se tienen 3 o más réplicas, ya que con 1 réplica la media  $\mu$  de los valores para un experimento coincide con el valor de la réplica y el error experimental

 $e_e = \frac{\sum |x_i - \mu|}{n}$  (n es el número de réplicas) es nulo; con dos réplicas los resultados de la media y del error experimental pueden estar muy influenciados por una medición anómala (lo cual sería contraproducente) y

además la varianza  $S^2 = \frac{\sum (x_i - \mu)^2}{n-1}$  tendría una dificultad semejante.

Por otra parte se consideró que la calidad de la tecnología que se utilizaría para desarrollar las mediciones permitía una alta precisión con muy pocas posibilidades de que se introdujeran errores sistemáticos y que el costo de cada experimento era alto lo cual implicaba debía seleccionarse el número de réplicas mínimos económicamente permisibles, por lo que se decidió realizar 3 réplicas en cada experimento.

El procesamiento digital de las tablas de datos se realizó mediante el software Tierra Versión 2.0 del 2002.

#### 2.3.1 Modelación matemática

El problema puede describirse por la necesidad de obtener expresiones que modelen las tendencias de los fenómenos estudiados con el fin de conceptualizar las cualidades de las mismas en sus diferentes fases y tengan un nivel satisfactorio de potencia de pronóstico lo cual garantiza la simulación del comportamiento de los fenómenos bajo diferentes regímenes de trabajo. Por el carácter de los datos (obtenidos a partir de diseños de experimentos) se decidió realizar solo un estudio básico estadístico de los datos de cada parámetro y considerando la alta precisión de las mediciones se decidió conservar todos los datos.

A continuación se procedió a evaluar los posibles métodos o tipos de modelos matemáticos que pudieran representar el comportamiento de los parámetros. A partir de pruebas realizadas y de consultas efectuadas a especialistas matemáticos Legrá (2002); y de la bibliografía consultada Levi (1962), López (1982), Lastov (1996), González (1996, 1997), Hernández (2001) se seleccionó el método de ajuste por los mínimos cuadrados.

Este método puede describirse (para una variable independiente y sin perder generalidad) por la ecuación general (Modelo Lineal Generalizado):

$$y = a_o + \sum_{i=1}^{k} a_i f_i(x)$$
 .....(2.1)

Donde *x* es la variable o parámetro independiente; *y* es la variable dependiente;  $a_o$  y  $a_i$  son los coeficientes ajustados; *k* es el número de sumandos de la expresión mínimo cuadrado y debe ser menor que el número de datos. Las funciones  $f_i(x)$  deben ser independientes entre sí (por ejemplo no se pueden utilizar al mismo tiempo *x* y 2*x*).

Para cada caso, los esfuerzos se concentraron en determinar el mejor conjunto de funciones  $f_i(x)$  tal que se cumplieran los dos preceptos expresados en el primer párrafo de este epígrafe (modelar tendencias y capacidad de pronosticar). Estas funciones en los casos tratados dependen de una o varias de las variables independientes estudiadas.

Los indicadores propuestos para valorar la eficiencia de los modelos fueron el coeficiente de correlación, las pruebas F de Fisher (para todo el modelo) y T de Student para los coeficientes  $a_{i,}$  y la experiencia acumulada en los estudios anteriores realizados.

Lo adecuado de la decisión tomada con respecto a la estrategia de modelación descrita está probado cuando se observan los resultados de los coeficientes de correlación obtenidos (generalmente por encima de 0,95) y los resultados de las pruebas F de Fisher y T de Student realizados (todas dieron resultados positivos).

Los modelos obtenidos en esta investigación describen adecuadamente los fenómenos físicos observados y permiten calcular los parámetros de los modelos garantizando un rango de error pequeño para mediciones realizadas en las condiciones experimentales originales. Para el caso de los modelos reológicos que se estudiarán en el próximo epígrafe este error es menor del 3% para cualquier estimación realizada a partir de las condiciones experimentales originales tal como se muestra en las Tablas 2.37 a Tabla 2.42. De lo explicado hasta aquí se infiere que estos modelos pueden ser utilizados para la determinación de los valores de los parámetros dependientes estudiados cuando varían los parámetros de operación en el proceso industrial.

## 2.3.2 Estudio y modelación de los parámetros reológicos a partir de los datos obtenidos experimentalmente en un reómetro.

A partir de los datos de las curvas de flujo y de los parámetros reológicos determinados y utilizando el programa de computación STAGRAPHICS, se realizó el análisis estadístico, obteniendo los modelos para cada caso en función de todas las variables cuyos coeficientes son significativos estadísticamente.

Con el Software "Tierra" Versión 2.0 del 2002, se obtuvieron los modelos de regresión y en cada caso se realizó:

- a. Un análisis de residuos con vista a comprobar la validez de los modelos, obteniéndose que las medias se ajustan a cero y la población sigue una distribución normal para un intervalo de confianza del 95 %.
- b. Prueba F de Fisher para todo el modelo.
- c. Pruebas T de Student para determinar si los coeficientes del modelo son significativos.

Se probaron varios modelos en los cuales se comprobó que la influencia de los términos compuestos (interrelaciones) era muy pequeña en comparación con la complejidad de los modelos que los incluyen, por lo que se prefirió asumir aquellos que solo incluyen las variables T, pH y C. Los modelos descodificados obtenidos son:

Para el esfuerzo cortante:

 $\tau_{o}$ = 0,410422 – 0,26743 (T) – 0,001325 (pH) + 0,43677 (C).....(2.2)

Donde r=0.9728 y para una prueba F de Fisher se obtuvo Fc=113,57 y como Ft=2.46 entonces se acepta el modelo. Los valores de la correlación parcial para los coeficientes de T, pH y C son, respectivamente, -0.325686, -0.360737 y 0.4096255 y una prueba t de Student para los coeficientes muestra la calidad de este modelo (nótese que en todos los casos t<=abs( $t_i$ )):

Valor teórico (t de Student), t= 1.65972

Valores de t<sub>i</sub> para los coeficientes: -3.26344813, -4.457201 y 9.170231. Para la viscosidad plástica:

μ<sub>p</sub>=0,022455–0,00459(T)–0,000775(pH)+0,013615(C) .....(2.3)

Donde r=0.98056 y para una prueba F de Fisher se obtuvo Fc=141,062 y puesto que Ft=2.46 entonces se acepta el modelo. Los valores de correlación parcial para los coeficientes de T, pH y C son, respectivamente, - 0.278813124, -0.3901726 y 0.4102417 y una prueba t de Student para los coeficientes muestra la calidad de este modelo (nótese que en todos los casos t<= $abs(t_i)$ ):

Valor teórico (t de Student), t= 1.65972

Valores de t<sub>i</sub> para los coeficientes: -7.835012, -5.982113 y 13.400172.

Las ecuaciones (2.2) y (2.3) permiten calcular valores de  $\tau_0$  y  $\mu_p$  para diferentes magnitudes de temperatura; pH y concentración de las colas. Nótese que a medida que aumenta la temperatura, el esfuerzo cortante y la viscosidad disminuyen.

2.4. Características Físico – Química y Mecánicas de la fase sólida y de la hidromezcla de las colas.

2.4.1. Caracterización de la fase sólida

Composición química.

En la (Tabla 2.1) se muestran los datos de la composición química correspondiente a cada muestra mineral estudiada.

| Muestras | Composición química |       |      |      |                  |      |      |      |  |  |
|----------|---------------------|-------|------|------|------------------|------|------|------|--|--|
|          | Ni                  | Со    | Fe   | Mg   | SiO <sub>2</sub> | AI   | Cr   | Mn   |  |  |
| R-1      | 0.30                | 0.081 | 47.6 | 4.30 | 12.45            | 2.00 | 3.5  | 0.75 |  |  |
| R-2      | 0.28                | 0.079 | 47.6 | 4.30 | 12.44            | 2.05 | 3.27 | 0.75 |  |  |
| R-3      | 0.28                | 0.079 | 47.6 | 4.15 | 11.29            | 2.04 | 3.42 | 0.66 |  |  |
| R-4      | 0.29                | 0.079 | 47.8 | 4.35 | 12.51            | 2.00 | 3.62 | 0.68 |  |  |
| R-5      | 0.28                | 0.079 | 47.6 | 4.20 | 11.91            | 2.03 | 3.56 | 0.69 |  |  |
| R-6      | 0.29                | 0.079 | 47.1 | 4.41 | 11.42            | 1.98 | 3.35 | 0.71 |  |  |

Tabla 2.1. Composición química de los residuos lixiviados en recuperación de amoniaco, % en peso.

Según los datos de la composición química los elementos predominantes, son el hierro y la sílice con valores medio de 47,7% y 12,34% respectivamente. En general, se observa poca variabilidad en las composiciones químicas de las muestras analizadas; sin embargo, por la (Tabla 2.2) puede verse que los elementos químicos se distribuyen en distintos minerales, por lo que la composición mineralógica difiere en cierta medida en las muestras investigadas en lo que respecta a los porcentajes de las fases mineralógicas presentes.

#### Composición mineralógica.

La composición mineralógica obtenida para la fase sólida de las muestras de cola se da en la (Tabla 2.2).

En la tabla se observa la presencia de las fases mineralógicas siguientes:

Magnetita ( FeFe<sub>2</sub>O<sub>4</sub>) Maghemita ( Ϋ́Fe<sub>2</sub>O<sub>3</sub>)

Fayalita (Fe<sub>2</sub>SiO<sub>4</sub>)

Magnesiocromita (Mg,Fe) Cr<sub>2</sub>O<sub>3</sub>)

Lizardita 1T (Mg,Ni)<sub>6</sub>Si<sub>4</sub>O<sub>10</sub>(OH)<sub>8</sub>

Cuarzo (SiO<sub>2</sub>)

| Fases Mineralógicas                                         | Muestras |       |       |       |       |  |  |
|-------------------------------------------------------------|----------|-------|-------|-------|-------|--|--|
|                                                             | R-1      | R-3   | R-4   | R-5   | R-6   |  |  |
| Magnetita                                                   | 40,41    | 38,20 | 38,80 | 37,94 | 40,10 |  |  |
| Maghemita                                                   | 36,55    | 36,40 | 36,00 | 36,80 | 37,45 |  |  |
| Fayalita                                                    | 11,51    | 9,49  | 9,32  | 10,61 | 10,89 |  |  |
| Magnesiocromita                                             | 6,69     | 6,39  | 6,23  | 6,19  | 6,55  |  |  |
| Lizardita 1T                                                | 3,94     | 9,12  | 9,19  | 7,41  | 4,20  |  |  |
| Cuarzo                                                      | 0,90     | 0,40  | 0,42  | 1,08  | 0,81  |  |  |
| $\mathbf{Relación}\left(\frac{Magnetita}{Maghemita}\right)$ | 1,106    | 1,05  | 1,08  | 1,031 | 1,07  |  |  |

Tabla 2.2. Composición mineralógica de la fase sólida correspondientes a las muestras de cola estudiadas.

Los datos de la tabla indican que la magnetita -maghemita constituyen las fases principales que componen estas colas.

Como fases secundarias más importantes están presentes la fayalita, la magnesiocromita y la lizardita 1T. A la muestra R-2 no fue posible no fue posible determinarle la composición mineralógica. A manera de ilustración , en la Figura se presenta el difractograma obtenido para la muestra R-1 (Figura 2.3).

Dado que la magnetita y la maghemita son óxidos de hierro con características magnéticas, es de esperar que las muestras poseen propiedades ferrimagnéticas, teniendo en cuenta el alto contenido de ambos óxidos férricos.

Es interesante señalar que, en la revisión de la literatura especializada, se encontró resultados acerca de la composición mineralógica de las colas de la Empresa " Comandante René Ramos Latourt" de Nicaro (epígrafe 1.6, cap.1), que es una fabrica niquelífera con tecnología carbonato amoniacal (proceso CARON). Las colas de Nicaro también contienen la Magnetita como fase principal, pero no se reporta la presencia de maghemita. Conociéndose que una de las vías de obtención de maghemita es por oxidación de la magnetita, se supuso que la maghemita presente en las

colas de la Empresa "Comandante Ernesto Che Guevara de Moa", sea el resultado de la oxidación de una parte de la magnetita que posee el mineral a la salida de los Hornos de Reducción, como consecuencia de características propias de la operación de la fábrica. Para comprobar esto, se analizaron muestras de los desechos lixiviados que salen de la Planta de Lixiviación y que habían sido tomadas conjuntamente con las colas que se estudian en la presente Tesis, en los mismos períodos. Los resultados de la composición mineralógica de los desechos lixiviados demostraron la presencia de maghemita en esas muestras, en menor proporción que en las colas, y de magnetita en mayor proporción . En la Tabla 2.4 se dan los datos del análisis realizado, correspondiente a la magnetita y a la maghemita. Las restantes fases mineralógicas se encuentran, en mayor o menor proporción, pero en el mismo orden que en las colas.

Comparando los datos de ambas tablas se observa que en las colas los contenidos de magnetita son mayores que en los desechos lixiviados.

Por los resultados obtenidos se deduce que, debido a las muy elevadas temperaturas ( alrededor de 300° C) que posee el mineral al entrar a la planta de lixiviación ( en Nicaro la temperatura es del orden de 200° C), debe comenzar un proceso de oxidación de la magnetita que, al parecer, se extiende hasta la Planta de Recuperación de Amoníaco, y que pudiera explicar la presencia de la maghemita en la cola de la Empresa "Comandante Ernesto Che Guevara".

#### Composición granulométrica.

Los resultados del análisis granulométrico se presentan en la (Tabla 2.3), en la que se observa que las partículas de tamaños menores de 43 µm, son mayoritarias y constituyen más del 60 % del volumen de la fase sólida, lo que se ilustran las características de distribución de tamaño por cernido (Figura 2.4), para la muestra R-2. Todas las muestras exhiben similar granulometría y constituyen sistemas altamente polidispersos.

| Clases de     | Diámetro | Fracción peso (%) |       |       |      |       |       |  |
|---------------|----------|-------------------|-------|-------|------|-------|-------|--|
| tamaño (mm)   | medio    | R-1               | R-2   | R-3   | R -4 | R-5   | R-6   |  |
|               | (mm)     |                   |       |       |      |       |       |  |
| +0,175        | 0,20     | 10,0              | 8,79  | 7,50  | 8,0  | 7,66  | 9,52  |  |
| -0,175 +0,147 | 0,16     | 2,6               | 2,75  | 2,70  | 2,8  | 2,67  | 2,49  |  |
| -0,147 +0,074 | 0,11     | 14,8              | 11,09 | 10,16 | 12,0 | 12,03 | 11,67 |  |
| -0,074 +0,043 | 0,059    | 11,95             | 9,51  | 10,72 | 11,0 | 11,45 | 10,84 |  |
| -0,043        | 0,022    | 60,65             | 67,85 | 68,92 | 66,2 | 66,19 | 65,48 |  |
| Total         | -        | 100               | 100   | 100   | 100  | 100   | 100   |  |

Tabla 2.3. Resultados del análisis granulométrico.





Conociendo el peso inicial de cada muestra y el de las fracciones correspondientes a las mismas, se obtienen las diferentes fracciones de tamaño de las muestras. Este tamaño de partículas da lugar a suspensiones con un comportamiento típico de los sistemas coloidales. Del análisis se deriva que las muestras de sólido son polidispersas.

#### Forma y tamaño de las partículas.

Con vista a tener una información de la forma de las partículas, se obtuvo un número de fotografías en las muestras dispersadas con auxilio de un microscopio electrónico.

Las observaciones realizadas para las muestras R-1 y R-3, demuestran el carácter de polidispersión de las partículas sólidas. Las partículas tienen forma de elipsoide de revolución, con una relación axial de 1,76 para la muestra R-1 y 1,18 para la muestra R-3, lo cual puede verse en la Figura 2.5, correspondiente a la muestra R-3.



Figura 2.5. Fotografía que ilustra la forma de las partículas para la muestra R-3.

Debido a esta forma elipsoidal las partículas de Magnetita y de Maghemita poseen propiedades magnéticas apreciables, lo cual se confirmó prácticamente con auxilio de un imán y con la caracterización magnética.

Esta forma elipsoidal también contribuye a que en las suspensiones de colas constituidas con estas partículas, exista la posibilidad de la formación de estructuras fuertes en dependencia de la concentración de sólidos, tal como se analiza en el epígrafe correspondiente a las propiedades reológicas.

#### Diámetro equivalente e índice de aplastamiento de las partículas.

La morfología de los granos se estudió con mucho cuidado con la ayuda de un microscopio binocular, clasificándose la muestra según los tamices 0.1 - 0.21; de dicha clasificación se analizaron las clases + 0.1 - 0.21 y + 0.21 (la clase – 0.1 no se analizó debido al pequeño tamaño de las partículas por lo que el microscopio no permitía observarlas). Se examinaron 100 granos, correspondientes a la muestra 1 y a la muestra 3 las cuales fueron fotografiadas (ver Figura 2.5) con la ayuda de un microscopio electrónico. La relación entre el tamaño y la forma de las partículas y su composición mineralógica se estudiaron con anterioridad, los resultados obtenidos fueron elaborados por la metodología propuesta por Giusti (1985).

El largo, el ancho, y el espesor de cada grano se midió con el objetivo de determinar el diámetro equivalente:

$$D_{eq} = \sqrt[3]{\binom{6}{\pi} \cdot l \cdot a \cdot e}$$
(2.4)

Donde:

I: largo (mm)

a: ancho (mm)

e: espesor (mm)

y el índice de aplastamiento

 $I_A = \frac{e}{\sqrt{l \cdot a}} \tag{2.5}$ 

Este índice expresa el aplanamiento que sufren los granos de cola. A pequeños valores del I<sub>A</sub> las partículas presentan forma aplanada en forma de elipsoide en revolución; mientras que, para valores igual a la unidad de dicho índice, las partículas alcanzan forma esférica. En el caso concreto de las muestras de colas estudiadas el índice de aplastamiento alcanza valores promedio de 0,58 (ver Figura 2.), y la geometría de las partículas correspondientes es la elipsoidal, en correspondencia con su composición mineralógica, la forma de las partículas y las mediciones experimentales realizadas en la instalación industrial, se puede constatar que durante el desplazamiento de las partículas a concentraciones cercanas y superiores al 35% de sólido en peso las partículas forman estructuras debido a su forma alargada y al elevado contenido de maghemita y de magnetita presentes en las fases mineralógica de las colas. Como se puede apreciar, la forma de las partículas de las colas es una característica estructural de gran importancia. En general estas partículas pueden tener diversas formas; estas pueden ser de cierta complejidad, pero se pueden tratar teóricamente como esferas o elipsoides de revolución (mayoritariamente estas últimas). Al unirse estas partículas entre sí se obtienen formas muy diferentes que en nada se

parecen a su forma inicial. De ahí que la forma de las partículas de colas se encuentre estrechamente vinculada al índice de aplastamiento.



Figura 2.6. Representación de  $I_A = f (D_{equ(pro)})$  para muestras de colas.

#### 2.13 Caracterización magnética de las muestras de cola.

El hecho de que las fases mineralógicas principales de las colas sean la Maghemita. crea la Magnetita v la necesidad de caracterizar magnéticamente las colas dado que tanto la Magnetita como la Magnemita constituyen minerales con importantes características magnéticas. Por otra parte, la caracterización magnética proporciona una información que permite comprender mejor los resultados obtenidos por la vía de la caracterización química, mineralógica y granulométrica de la cola, así como inferir las posibles causas de algunos comportamiento observados en la propiedades de este producto y de sus suspensiones en agua amoniacal.

En la Figura 2.7 se presentan las curvas de histéresis magnética a temperatura de 25°C para las muestras R-1 y R-5. Como puede verse en las figuras, ambas muestras presentan características propias de los materiales ferrimagnético. Curvas de histéresis similares se han obtenido para nanopartículas de Maghemita, Garcell y Col. (1998). Las diferencias mas importantes entre estas dos muestras viene dada por la magnetización

remanente, M<sub>r</sub>, con un valor de 4,56 kA/m para la muestra R-1 y de 3,22 kA/m para la muestra R-5, así como por la fuerza coercitiva de magnetización, H<sub>cm</sub>, con un valor de 14,53 kA/m (183 Oe) para la muestra R-1 y de 10,59 kA/m (133 Oe), para muestra R-5.



Figura 2.7. Curva de histéresis magnética a temperatura de 25°C correspondiente a la muestra R-1.

La diferencia observada en los valores de estos dos parámetros de ambas muestras indican que la muestra R-1 exhibe propiedades magnéticas más acentuadas que la R-5. Por otra parte, se determinó para ambas muestras que la permeabilidad magnética relativa máxima,  $k_{max}$ , es igual 1,24. Este parámetro indica que estas muestras adquieren un campo magnético 1,24 veces mayor, que el campo magnético que se les aplique. Por tanto, si se tiene en cuenta que la intensidad del campo magnético de la Tierra es aproximadamente de 0,2 Gauss ( $0,2*10^{-4}$  Tessla), entonces la cola depositada en el dique adquiere un campo magnético de 0,25 Gauss, es decir, mayor que el campo magnético natural de la Tierra. Por consiguiente, dada la enorme masa de cola depositada en el dique, es de esperar que esta provoque una anomalía magnética en esa región.

En la (Tabla 2.7) se muestra un resumen de la caracterización magnética de las 6 muestras de cola estudiadas. En ella pueden verse los valores de los

parámetros  $M_r$  y  $H_{cm}$  explicado anteriormente. Se observa, por ejemplo, que el magnetismo remanente disminuye en el orden R-1>R-6>R-5 lo cual coincide con la proporción de Magnetita y Maghemita (Tabla 2.3) que también disminuye en ese mismo orden, dado que la Magnetita posee propiedades magnética de mayor intensidad que la Maghemita.

| Magnitudes/ |                     |                     |                     |                     |                     |                     |
|-------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Muestras    | R-1                 | R-2                 | R-3                 | R- 4                | R-5                 | R-6                 |
| Mr          | 4.56                | 3.59                | 3.51                | 3.41                | 3.22                | 3.26                |
|             | kA/m                | kA/m                | kA/m                | kA/m                | kA/m                | kA/m                |
|             | 4.56                | 3.59                | 3.51                | 3.41                | 3.22                | 3.26                |
|             | emu/cm <sup>3</sup> |
| Hcm         | 14.53               | <b>13.33</b>        | 12.63               | 11.21               | 10.79               | 10.79               |
|             | kA/m                | kA/m                | kA/m                | kA/m                | kA/m                | kA/m                |
|             | 183                 | 167                 | 159                 | 141                 | 133                 | 136                 |
|             | Oe                  | Oe                  | Oe                  | Oe                  | Oe                  | Oe                  |

Tabla 2.4. Resumen de caracterización magnética.

Las magnitudes del producto BH máximo (Tabla 2.4) indica, que la muestra R-1 es capaz de imantarse en mayor cuantía que las restantes, bajo la acción de un campo magnético de la misma intensidad

Por otra parte, el comportamiento reológico de las pulpas de las muestras estudiadas no se corresponde con el de la caracterización magnética, ya que las suspensiones que exhiben mayores viscosidades son las de las muestras R-6 y R-3, y no la de R-1. Ello pudiera atribuirse a los efectos combinados de las propiedades magnéticas con las superficiales, que proporcionan ese resultado neto.

#### 2.4.2 Caracterización de las hidromezclas de las colas.

#### 1.8. Estabilidad de las suspensiones.

Las suspensiones preparadas debido a su alto contenido de partículas finas (menores de 43  $\mu$ m), se comportan como sistemas coloidales.

Dado que en los sistemas coloidales, las partículas se cargan eléctricamente es necesario el estudio de las propiedades superficiales que influyen sobre la estabilidad de las suspensiones de cola, con vista a una mayor comprensión de los efectos del pH sobre el comportamiento de estas pulpas, los cuales a su vez influyen sobre su reología en proceso de sedimentación, en la operación de los sistemas hidráulicos y en el diseño de èstos.

2.8.1 Curvas de densidad de carga superficial en función del pH.

La relación de  $\sigma_0$  vs pH describe las condiciones de estabilidad de las suspensiones. En la (Figura 2.8) se presentan las curvas de  $\sigma_0$  vs pH a dos concentraciones del electrolito (KNO<sub>3</sub>) para una suspensión de cola (R-2) preparada con agua destilada. Como puede apreciarse, los valores de  $\sigma_0$  se incrementan con el aumento de la fuerza iónica para un mismo valor de pH. Las curvas se interceptan en el eje de las abscisas indicando el valor del pH correspondiente al p.z.c de la suspensión.



Figura 2.8 Curvas de carga superficial en función del pH y la fuerza iónica.

En este caso, el valor del p.z.c depende de la concentración del electrolito, indicando claramente que no hay adsorción específica de iones  $NO_3^-$  y K<sup>+</sup> en la superficie de las partículas sólidas( por lo que se dcice que el electrolito es indiferente) ,por esta razón se utiliza este electrolito para variar la fuerza

iónica en las pruebas de estabilidad. Para valores de pH < p.z.c la carga neta superficial del sólido es positiva y para valores de pH > p.z.c es negativa. En la (Figura. 2.12) se muestran las curvas de  $\sigma_0$  vs pH a tres concentraciones diferentes del electrolito indiferente (KNO3) para una suspensión de cola (R-3) preparada con agua amoniacal. Un comportamiento similar exhiben las suspensiones de las muestras restantes, tanto con agua destilada como con las preparadas con agua amoniacal. A pH alejados del p.z.c predominan las fuerzas de repulsión electrostática entre las partículas, por lo que la suspensón es mas estables, no forman agregados y la sedimentación se dificulta. A pH próximos al p.z.c la pulpa se hace inestable y las partículas pueden flocular y sedimentar con mayor posibilidad.

2.9 Influencia de la naturaleza de las muestras y de la composición iónica del medio dispersante sobre la estabilidad de la suspensión.

La influencia de la naturaleza de las muestras de mineral puede ser explicada con el auxilio de la (Figura 2.13), en la cual se presentan las curvas de  $\sigma_0$  vs pH, a una misma fuerza iónica y medio dispersante, de las suspensiones correspondientes a dos de las muestras estudiadas.

Se observa que para un mismo valor de pH la carga superficial es diferente en cada una de las curvas, por lo cual se deduce que las diferencias existentes en su composición mineralógica constituyen un factor fundamental en el comportamiento mostrado por cada muestra.

Conociendo que los p.z.c resultantes de las pulpas de cada mineral se obtienen por la contribución de los p.z.c de cada fase mineralógica, se llega a la conclusión de que las diferencias existentes en los valores del p.z.c están dadas por las diferencias que presentan las muestras minerales en su composición mineralógica (Tabla 2.5). En la figura puede verse que la suspensión que exhibe un mayor p.z.c es la correspondiente a la muestra (R-3), y es esta, la que presenta mayor contenido de Magnetita y de Maghemita ; mientras que la pulpa de la muestra (R-2) tiene un menor valor de su p.z.c, dado su inferior contenido de Maghemita - Magnetita.

Así, a mayores contenidos de Magnetita y de Maghemita en las pulpas, las cargas superficiales son mayores y los p.z.c tienden al pH  $\approx$  6.6, ( en agua destilada) que es el valor del p.z.c para suspensiones de Magnetita y de Maghemita obtenidos en otros trabajos.

La (Tabla 2.5) confirma el análisis realizado y muestra los resultados de los p.z.c para cada una de las suspensiones de cola, en dependencia del medio dispersante y de la concentración(fuerza iónica) del electrolito KNO<sub>3</sub>.

| Muestras         | Agua D             | Destilada          | Agua Amoniacal     |                    |                    |  |
|------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--|
| KNO <sub>3</sub> | 10 <sup>-2</sup> M | 10 <sup>-1</sup> M | 10 <sup>-3</sup> M | 10 <sup>-2</sup> M | 10 <sup>-1</sup> M |  |
| R-1              | 6.25               | 6.25               | -                  | 5.5                | 5.5                |  |
| R-2              | 6.25               | 6.25               | 5.54               | 5.51               | 5.50               |  |
| R-3              | 6.40               | 6.35               | 5.70               | 5.72               | 5.70               |  |
| R-4              | 6.28               | 6.30               | -                  | 5.60               | 5.60               |  |
| R-5              | 6.32               | 6.30               | -                  | 5.625              | 5.62               |  |
| R-6              | 6.50               | 6.45               | -                  | 5.80               | 5.75               |  |

Tabla 2.5. Valores de p.z.c de las colas del proceso CARON para diferentes muestras en agua destilada y agua amoniacal.

El efecto del medio dispersante, con el cual se preparan las suspensiones, puede verse tanto en la (Tabla 2.5) como en la (Figura 2.14). En esta última se muestran las curvas de  $\sigma_0$  vs pH para las suspensiones preparadas con la muestra (R-6) en ambos medios dispersantes y a una misma fuerza iónica  $(10^{-2} \text{ M KNO}_3)$ . Puede verse que en la pulpa preparada con agua amoniacal, las partículas adquieren mayor carga superficial (a un mismo valor de pH), y se desplaza el p.z.c hacia pH más ácidos, esto demuestra la adsorción específica de cationes(como el NH<sub>4</sub><sup>+</sup>, que se encuentra en grandes cantidades), lo cual influye sobre otras propiedades de las pulpas, tales como las reológicas y las de sedimentación, y, por tanto, en la transportación de estas suspensiones por tuberías.

#### 2.10 Caracterización reológica de los desechos lixiviados (colas).

Se analizaron las 6 muestras con diferentes concentraciones de sólido (desde 30 a 60 % en peso) en un reómetro rotacional Rheostest 2.1 de cilindros concéntricos en la Universidad de Oriente, donde se obtuvieron los valores de esfuerzo cortante ( $\tau$ ) en función de la velocidad de deformación ( $\gamma$ ),a diferentes temperaturas (en el rango de 23 a 90° C) y a diferentes pH, de acuerdo a las condiciones del proceso productivo de la industria.

#### 2.10.1 Efecto de la concentración de sólidos.

En las muestras de colas analizadas se pudo comprobar que, para concentraciones de 30 y 35% en peso de sólido, las curvas de flujo obtenidas exhiben un comportamiento seudoplástico, mientras que para concentraciones de 40 a 60% en peso las pulpas adquieren propiedades plásticas, mostrando un comportamiento típico de los plásticos de Bingham (Figura 2.15). En todos los casos, a medida que aumenta la concentración los esfuerzos cortantes,  $\tau$ , se incrementan, y, por tanto las viscosidades aparentes, para un valor fijo de  $\gamma$ .



Figura 2.9. Curvas de flujo ( $\tau$  vs  $\gamma$ ) a distintas concentraciones de sólido de las pulpas (muestra R-3).

Para las pulpas que poseen comportamiento seudoplástico sus datos han sido ajustados al modelo de Oswald de Waele, el cual esta caracterizado por los parámetros reológicos: índice de consistencia, K, e índice de flujo, n. Los valores de K aumentan con el incremento de la fase sólida, mientras que los de n cambian muy poco con dicho incremento a una temperatura dada (Tabla 2.6).

Las pulpas que exhiben un comportamiento plástico se han caracterizado mediante los parámetros reológicos del modelo Bingham:  $\tau_0$  (esfuerzo cortante inicial) y  $\mu_p$  (viscosidad plástica). Ambos parámetros aumentan con el incremento de la concentración de la fase sólida a una misma temperatura (Figuras 2.16 y 2.17; Tabla.2.6). Comportamientos similares se han obtenidos por Cerpa (1997) en pulpas de lateritas.

## 2.11. Influencia de la naturaleza de las muestras minerales en el comportamiento reológico de las suspensiones.

La naturaleza de los minerales juegan un papel fundamental en el comportamiento reológico de las suspensiones. Las diferencias existentes en la composición mineralógica de las muestras marcaron las diferencias en los comportamientos de sus suspensiones.

Estas diferencias se pueden observar en la (Figura. 2.18). En la figura se muestran las curvas de flujo de algunas suspensiones analizadas a una misma concentración de sólidos y medio dispersante (Agua amoniacal). Se observa que la pulpa de muestra R-6 presenta los mayores valores de  $\tau$ , y, por consiguiente, la mayor viscosidad; mientras que la suspensión de la muestra R-4 es la menos viscosa. Ello está en correspondencia con los contenidos de Maghemita y Magnetita en las muestras y con las propiedades superficiales.

Las curvas anteriores confirman el modelo(Plástico Bingham) que describe el comportamiento reológico de sus suspensiones.

#### 2.11.1 Efecto de la temperatura.

En las pulpas estudiadas que exhiben comportamiento seudoplástico, los valores del índice de consistencia, K, disminuyen con el aumento de la temperatura (Figura.2.19 a); mientras que, por el contrario, el índice de flujo n aumenta ligeramente con el incremento de la temperatura a una misma concentración (Figura.2.19 b), como es de esperar.

Las pulpas que presentan plasticidad, la viscosidad y los parámetros reológicos disminuyen con el aumento de la temperatura (Figura 2.20 a y 2.20 b). Este comportamiento es típico de la mayoría de las dispersiones minerales.

Las Figuras.2.21 (a) y 2.21 (b) muestran la influencia de la temperatura sobre las propiedades reológicas de las pulpas de las colas mediante la correlación gráfica de  $\tau$  vs.  $\mu_0 \gamma$ , que ha sido propuesta por Atsushi y Col. (1987). El método propuesto permite comprender el efecto de la temperatura sobre el mecanismo de estructuración de la suspensión, teniendo en cuenta que las fuerzas hidrodinámicas que actúan entre las partículas del medio disperso son proporcionales al producto de la viscosidad del medio dispersante y del gradiente de velocidad,  $\mu_0 \gamma$ , a diferentes temperaturas y concentraciones. Así, puede observarse que para las concentraciones de 30 y 35% en peso de sólidos se obtienen curvas únicas para todas las temperaturas, lo cual indica que a esas concentraciones la temperatura solo afecta a la viscosidad del medio dispersante, pero no a los mecanismos de formación de la estructura. En cambio, para la concentración de 45% no se obtiene una única curva al variar la temperatura, manifestándose con ello que para esta concentración la temperatura influye, no solo sobre el medio dispersante, sino, también, sobre la estructura que forman las partículas sólidas, debilitándose las fuerzas de cohesión interpartículas al aumentar la temperatura. Este efecto se observó, también, para todas las concentraciones mayores de 45%, en todas las suspensiones estudiadas.

#### 2.11.2 Efecto del pH.

El efecto del pH en las pulpas de las colas se muestra en la (Figura 2.22), donde se observa la variación de la viscosidad con el pH a diferentes concentraciones del sólido y a la temperatura de 28°C, para la muestra R- 2 y R- 3, en agua destilada.

Los resultados son similares para las suspensiones de las restantes muestras.

Como se observa en la figura, los máximos valores de viscosidad en cada muestra se alcanzan alrededor de los p.z.c de cada muestra, donde se logra la mayor inestabilidad y estructuración de las pulpas. Para valores de pH inferiores o superiores al indicado, las viscosidades son menores. Por consiguiente, la proximidad o lejanía del pH al p.z.c determina en gran medida la viscosidad de la suspensión y con ello su comportamiento reológico. Esta valoración está basada en los resultados obtenidos por Garcell (1998) con suspensiones acuosas de nanopartículas de Maghemita, para las que se determinó un valor del punto isoeléctrico ( i.e.p) y del punto de carga cero (p.z.c) de 6,6. Los valores de i.e.p. obtenidos por otros autores con suspensiones de Magnetita y Maghemita (6,6; Garcell (1998) y 6,6-7; Blesa y Col. (1984; 1997) respaldan totalmente estos resultados.

# 2.12. Estimación de los parámetros reológicos K y n para las pulpas de colas del proceso CARON que presentan comportamiento seudoplástico en dependencia de la temperatura.

Los valores del índice de consistencia K y del índice de flujo n, pueden ser estimados mediante expresiones obtenidas a partir de los datos experimentales, que han sido procesados con ayuda del programa de computación **TIERRA**.

Para determinar la dependencia del índice de consistencia con la temperatura (tomando, arbitrariamente como referencia,  $T_1 = 40^0$  C), se correlacionaron (en forma normalizada) los diferentes valores de los índices de consistencia a distintas temperaturas, K<sub>i</sub>, respecto al índice de

consistencia experimental a la temperatura de referencia,  $K_{40}{}^{o}{}_{C}$ , como una función de la relación adimensional de temperaturas,  $\frac{40 - T_{i}}{40}$ . Así, se obtuvo la siguiente correlación:

La ecuación (2.7) es única y válida para cualquier concentración comprendida entre 25 – 35 % en peso de sólidos y para cualquier temperatura en el rango de 28 -  $90^{\circ}$  C.

En la (Figura 2.23) se representa la curva generalizada descrita por la ecuación (2.7). Tanto la (Figura 2.23) como la expresión (2.7), permiten estimar los valores de K como función de T, a una concentración dada (dentro de los rangos de validez establecidos) con un error medio de 1.7 %. Los índices de flujo son poco afectados por la concentración y por la temperatura, en los rangos señalados anteriormente para el índice K. Los valores de n para las pulpas de las colas pueden ser estimados por la expresión siguiente:

 $n = 0.4357 \cdot T_i^{0.1177} \tag{2.8}$ 

La ecuación (2.8) da valores calculados de n con un error medio de  $\pm$  1.438 %, respecto a los valores experimentales.

#### 2.13 Caracterización magnética de las muestras de cola.

El hecho de que las fases mineralógicas principales de las colas sean la Magnetita y la Maghemita, crea la necesidad de caracterizar magnéticamente las colas dado que tanto la Magnetita como la Maghemita constituyen minerales con importantes características magnéticas. Por otra parte, la caracterización magnética proporciona una información que permite comprender mejor los resultados obtenidos por la vía de la caracterización química, mineralógica y granulométrica de la cola, así como inferir las posibles causas de algunos comportamiento observados en la propiedades de este producto y de sus suspensiones en agua amoniacal.

En la Figura 2.24 (a) y 2.24 (b) se presentan las curvas de histéresis magnética a temperatura de 25°C para las muestras R-1 y R-5. Como puede

verse en las figuras, ambas muestras presentan características propias de los materiales ferrimagnético. Curvas de histéresis similares se han obtenido para nanopartículas de Maghemita, Garcell y Col. (1998). Las diferencias mas importantes entre estas dos muestras viene dada por la magnetización remanente, M<sub>r</sub>, con un valor de 4,56 kA/m para la muestra R-1 y de 3,22 kA/m para la muestra R-5, así como por la fuerza coercitiva de magnetización, H<sub>cm</sub>, con un valor de 14,53 kA/m (183 Oe) para la muestra R-1 y de 10,59 kA/m (133 Oe), para muestra R-5.

La diferencia observada en los valores de estos dos parámetros de ambas muestras indican que la muestra R-1 exhibe propiedades magnéticas más acentuadas que la R-5. Por otra parte, se determinó para ambas muestras que la permeabilidad magnética relativa máxima,  $k_{max}$ , es igual 1,24. Este parámetro indica que estas muestras adquieren un campo magnético 1,24 veces mayor, que el campo magnético que se les aplique. Por tanto, si se tiene en cuenta que la intensidad del campo magnético de la Tierra es aproximadamente de 0,2 Gauss ( $0,2*10^{-4}$  Tessla), entonces la cola depositada en el dique adquiere un campo magnético de 0,25 Gauss, es decir, mayor que el campo magnético natural de la Tierra. Por consiguiente, dada la enorme masa de cola depositada en el dique, es de esperar que esta provoque una anomalía magnética en esa región.

En la (Tabla 2.7) se muestra un resumen de la caracterización magnética de las 6 muestras de cola estudiadas. En ella pueden verse los valores de los parámetros  $M_r$  y  $H_{cm}$  explicado anteriormente. Se observa, por ejemplo, que el magnetismo remanente disminuye en el orden R-1>R-6>R-5 lo cual coincide con la proporción de Magnetita y Maghemita (Tabla 2.3) que también disminuye en ese mismo orden, dado que la Magnetita posee propiedades magnética de mayor intensidad que la Maghemita.

Las magnitudes del producto BH máximo (Tabla 2.7) indica, que la muestra R-1 es capaz de imantarse en mayor cuantía que las restantes, bajo la acción de un campo magnético de la misma intensidad.

Por otra parte, el comportamiento reológico de las pulpas de las muestras estudiadas no se corresponde con el de la caracterización magnética, ya que

las suspensiones que exhiben mayores viscosidades son las de las muestras R-6 y R-3, y no la de R-1. Ello pudiera atribuirse a los efectos combinados de las propiedades magnéticas con las superficiales, que proporcionan ese resultado neto.

#### 2.14 Conclusiones parciales.

Los resultados obtenidos en el desarrollo de la caracterización de las colas permiten llegar a las siguientes conclusiones:

- 1.- Las pulpas de las muestras de colas de la Empresa Comandante "Ernesto Che Guevara" de Moa estudiadas, poseen composiciones químicas muy parecidas, pero difieren en su composición mineralógica, siendo esta última la que determina las diferencias entre ellas, dadas por su naturaleza. Las fases mineralógicas principales en todas las muestras son la Magnetita y la Maghemita con un contenido medio en el orden del 39,09 y 36,64% en peso del total respectivamente, siendo las fases secundarias más importante la fayalita, la magnesio-cromita y la lizardita 1T.
  - 2.- Las muestras están constituidas por partículas finas con tamaños inferiores a 43 μm (más del 60% en peso de sólidos) y un tamaño medio de 0.072mm, siendo ellas las causantes principales de las propiedades superficiales y de la plasticidad de las suspensiones. La distribución de tamaño las caracteriza como sistemas polidispersos.
  - 3.- Las mediciones realizadas con ayuda de la microscopía electrónica revelan un índice de aplastamiento promedio de 0.58 y un diámetro equivalente promedio de 0.04mm, siendo la forma predominante de las partículas la de un elipsoide de revolución lo que facilita la formación de estructuras debido al aumento de la superficie de contacto entre las partículas.
  - 4.- Los resultados de las investigaciones de la velocidad de caída límite demuestra que el criterio de Liashehenko posee valores mas estables y uniformes que los demás criterios con relación a los datos experimentales. El coeficiente de forma utilizado en la fórmula de

Liashehenco oscila de 0.569 a 0.487 para tamaños de granos de 0.175 a 0.044mm, lo que corrobora la forma elipsoidal de estos.

- 5.- Los ensayos experimentales sobre la velocidad de sedimentación a diferentes concentraciones de sólido en peso, demostraron que esta disminuye a medida que aumenta el contenido de sólido en la zona de sedimentación impedida, se incrementan los volúmenes de sedimento, comportándose similar a un sistema homogéneo, separándose la parte espesada del líquido clarificado.
- 6.-La estabilidad de las suspensiones de las muestras estudiadas y sus puntos de carga cero (p.z.c.) son afectadas por el medio dispersante, al comparar los resultados obtenidos de pulpas preparadas con agua destilada o con agua amoniacal. Las pulpas de agua amoniacal exhiben mayores cargas superficiales y p.z.c. más ácidos. Ello se atribuye a la adsorción específica de iones de cargas positiva, como el N H<sub>4</sub><sup>+</sup>. Para pH < p.z.c, la carga superficial es positiva y para pH > p.z.c. es negativa.
- 7.- Las magnitudes de las cargas superficiales y de los p.z.c. se incrementan con el aumento del contenido de maghemita-magnetita de las muestras, tendiendo hacia el valor del p.z.c. de esos minerales puros. Así, los valores del p.z.c. cambian de mayor a menor por muestras en el siguiente orden

 $R-6 > R-3 > R-5 \approx R-4 > R-2 = R-1$ .

- 8.- El comportamiento reológico depende fundamentales de la concentración de sólido y de las propiedades superficiales, dado el alto contenido de partículas finas. A concentraciones de 25 a 35% en peso de sólidos el comportamiento es seudoplástico, mientras que para concentraciones mayores fluyen como plástico Bingham.
- 9.- Las curvas de flujo y las viscosidades cambian con la temperatura y el pH, comprobándose que la temperatura tiene influencia solamente sobre el medio dispersante para las concentraciones de 25 a 35% en peso de sólidos. Sin embargo; para las concentraciones comprendidas entre 40-60% de sólido en peso, la temperatura además, tiene un

marcado efecto sobre la estructura que forma la parte sólida. Los mayores valores de viscosidad, a diferentes concentraciones y temperaturas, para todas las muestras se alcanzan a magnitudes del pH igual o cercanas a los p.z.c. de las suspensiones.

10.-La caracterización magnética demuestra que las colas son materiales ferrimagnéticos debido a que sus fases mineralógicas principales son la Magnetita y la Maghemita. Este hecho da pié para suponer que la presencia de la cola acumulada en grandes cantidades en el dique provoca alguna anomalía magnética en el entorno en que se encuentra con el correspondiente impacto negativo medioambiental.

### CAPITULOIII. DETERMINACIÓN EXPERIMENTAL DEL PROCESO DE TRANSPORTACION DE LAS COLAS.

#### 3.1 Breve descripción de la instalación experimental a escala Semiindustrial.

La investigación de los parámetros y regímenes de hidrotransportación de las colas del proceso CARON se realizaron en una instalación de dimensiones semi- industriales construida en el Instituto Superior Minero Metalúrgico de Moa tal como ya se mencionó en el epígrafe 2.2. Esta instalación fue modernizada y dotada de equipos y accesorios que permiten mayor calidad en el registro y control de las variables y su procesamiento posterior.

El esquema de la instalación se muestran en la (figura 3.15), consta de los tanques 1 y 2, para la calibración del tubo Venturi y de recepción de la pulpa hidrotransportada respectivamente, las bombas centrífugas 3 y 4, los puntos de toma de presión 5, el tubo Venturi 6, los tramos de tuberías 7, 8 y 9, para determinar las pérdidas hidráulicas, el drenaje del sistema por la válvula 12, las válvulas de regulación 13 y 14, y las ventanas del cristal 15 y 16. Desde la (figura 3.2 a la 3.5) se muestran vistas parciales de la instalación que proporcionan imágenes muy descriptivas de las secciones más importantes que la componen.



Figura. 3.1. Esquema de la instalación de hidrotransporte para la modelación de flujos y ensayos de bombas.

Las tuberías 7,8,9, poseen los diámetros 50, 100, 150 mm respectivamente y los puntos de tomas de presión están separados por longitudes de tubos de 20, 14.5 y 10 m respectivamente.





Figura 3.2 Instalación de hidrotransporte a escala semi -industrial.

Los puntos 5 ( para medir la presión) se encuentran alejados de los extremos de la tubería a distancia igual o mayor de 40 D, para evitar las influencias de las perturbaciones más cercanas (codos, ventanas de cristal, etc.). El punto de observación del flujo de la pulpa (ventana de cristal) se encuentra situado a 5.5 m del tubo de Venturi.

El tanque 1, posee un volumen de  $1.9 \text{ m}^3$  y el tanque 2, de  $2.9 \text{ m}^3$ . La bomba 3 tiene una capacidad de  $160 \text{ m}^3 / \text{h}$ , y, la bomba 4, de  $60 \text{ m}^3 / \text{h}$ . Durante la toma de datos experimentales, la instalación opera en circuito semi – cerrado (succión, impulsión, canal (17) y tanque). La limpieza se logra con el trabajo de la instalación en circuito abierto (succión, impulsión y drenaje).

Para eliminar el aire en cada medición se tomaron diferentes medidas, una de ellas fue la ubicación de ventosas mediante las cuales se expulsaba el aire de la tubería a la atmósfera.

La regulación del caudal de la bomba se realizó con ayuda de una válvula de compuerta que se encuentra en la tubería de alimentación. El llenado del sistema (con agua amoniacal, primero, y añadiendo sólido, después) se efectuó directamente en el tanque receptor- regulador.

La medición del caudal de la pulpa se realizó con un flujómetro electromagnético NP-11(16). Para su calibración, se utilizó el método del peso volumétrico con ayuda de un tanque graduado (1), instalado al final del circuito de tubería en serie con el colector de alimentación (2).

El tiempo de llenado del tanque calibrado se midió con un cronómetro con precisión de 0,1 s. El error máximo durante la determinación del caudal no fue mayor de 1,5 %. La temperatura del agua amoniacal y de la pulpa en el colector, se midió con un termopar situado en el tanque.

Las pérdidas de presión en la zona investigada se midieron con transmisores de 0 – 5 mA, los cuales captan la presión, la transforman en energía eléctrica, y envían la señal para un registrador central, el cual da la información de los valores de presión medido en cada punto.

La pendiente hidráulica se determinó por la expresión;

 $i = \Delta Proz/L$  (Pa/m) .....(3.1) Donde:

 $\Delta Proz - Caída de presión por rozamiento,( Pa )$ 

L – Longitud de la tubería entre los puntos de toma de presión,(m)

El valor de las divisiones de la escala de peso es de 0,05 Kg. Por los datos de estas mediciones el error relativo durante la determinación de la concentración no superó el 1%.

Para el estudio del proceso y carácter del movimiento de la pulpa, fueron utilizados tramos de 100 (8) y 150 mm (9), la ventana de cristal (16) colocada en la tubería de 150 mm (8). La concentración de la pulpa periódicamente se controló a través de la toma de muestras con su posterior corrección.

La investigación de los parámetros de transportación de las colas se realizó durante la variación de la concentración másica de 25 hasta 50 % y a las temperaturas de 28, 60 y 90°C.
El contenido de las partículas sólidas, para un volumen dado de la hidromezcla, se calculó por la siguiente fórmula:

 $S = m_s / m_s + m_a$  .....(3.2)

Donde: S – Concentración en peso, adimensional.

m<sub>s</sub>-masa del sólido, Kg.

m<sub>a</sub> - masa del agua, Kg.

La concentración volumétrica se determinó por la expresión:

 $Cw = S \rho_p / \rho_s$  o  $Cw = \rho_p - \rho_o / \rho_s - \rho_o$ 

donde:  $\rho_{s-}$  densidad del sólido; kg/m3

 $\rho_o$  – densidad del agua; kg/ m<sup>3</sup>.

 $\rho_{p}$  densidad de la pulpa; kg/ m<sup>3</sup>.

La densidad calculada de la pulpa se determinó por la fórmula:

 $\rho_{p=} \rho_{s} / \rho_{s-s} (\rho_{s-1})$ 

En la tabla 3.1 se dan los datos acerca de los parámetros básicos para la preparación de las suspensiones durante los ensayos experimentales.

| No. | Volumen<br>del<br>tanque,<br>m <sup>3</sup> . | Volumen<br>de la<br>tubería,<br>m <sup>3</sup> . | Masa de<br>mineral,<br>kg. | Concentrac<br>ión de las<br>suspensio<br>nes en<br>peso, %. | Concentraci<br>ón de las<br>suspension<br>es en<br>volumen, %. | Dens<br>suspens<br>28°C | idades de<br>siones en,<br>60°C | las<br>kg/m <sup>3</sup> .<br>90°C |
|-----|-----------------------------------------------|--------------------------------------------------|----------------------------|-------------------------------------------------------------|----------------------------------------------------------------|-------------------------|---------------------------------|------------------------------------|
| 1   | 1.820                                         | 1.028                                            | 949.3                      | 25                                                          | 8.78                                                           | 1230                    | 1190                            | 1046                               |
| 2   | 1.820                                         | 1.028                                            | 1220.5                     | 30                                                          | 11.45                                                          | 1300                    | 1235                            | 1105                               |
| 3   | 1.820                                         | 1.028                                            | 1898.6                     | 40                                                          | 19.09                                                          | 1500                    | 1425                            | 1275                               |
| 4   | 1.820                                         | 1.028                                            | 2563.2                     | 45                                                          | 24.8                                                           | 1650                    | 1568                            | 1400                               |
| 5   | 1.820                                         | 1.028                                            | 2848                       | 50                                                          | 28.6                                                           | 1750                    | 1663                            | 1488                               |

las colas en la instalación semi – industrial.

3.2.1 Dependencia de gradiente hidráulico (i =  $\Delta P / L$ ) con la velocidad en tuberías circulares.

Las investigaciones de los parámetros de hidrotransporte de las colas se realizaron para concentraciones de 25, 30, 40, 45 y 50 % en peso de sólidos (tabla 3.1) en un rango de temperatura de  $28 - 90^{\circ}$  C.

Los datos experimentales fueron elaborados, obteniéndose las relaciones i = f(v) para el flujo de cola en las tuberías de 100 y 150 mm de diámetro.

En las figura 3.7 se muestran las curvas a 28°C. En ellas se observa que durante el hidrotransporte de las pulpas de colas del proceso CARON se presentan, en general, dos regímenes de movimiento: estructural (laminar) y turbulento. En los gráficos, no se distingue claramente la existencia de una zona de transición debido, muy probablemente, a que esta es muy breve y los datos experimentales obtenidos no resultan suficiente para su representación clara. Es por ello que el cambio de régimen, aparentemente, es brusco.



Figura 3.7. Dependencia i = f(v) para el movimiento de las pulpas de cola (muestra R-1) en un tubo circular de D = 150 mm a la temperatura de  $28^{\circ}$ C y a las concentraciones: 1– agua; 2– 25 %; 3– 30 %; 4– 40 %; 5–45 %; 6– 50 %.

En la figura, solo se aprecia bien el cambio de régimen para las concentraciones de 45 y 50 % (en la tubería de 150 mm) y para 50 % (en la tubería de 100 mm). Las restantes curvas muestran solo el régimen turbulento.

Los puntos experimentales correspondientes a la zona turbulenta presentan, en todos los casos, un comportamiento no lineal. La zona inicial de las curvas que describen el régimen estructural puede ser representada por una recta que tiende a interceptar el eje de las ordenadas a una distancia dada del origen. Para diferentes concentraciones másicas, estas rectas tienen diferentes ángulos de inclinación (figura 3.7). Las curvas i = f(v) obtenidas para el régimen turbulento tienen mayor pendiente que las curvas análogas para el agua.

En la figura 3.7 se observa que la posición de las curvas depende de la concentración de sólidos, mostrando las mismas características y se diferencian por un incremento de las pérdidas hidráulicas debido al aumento de la fase sólida en la hidromezcla.

Los datos representados en la figura 3.7 fueron procesado estadísticamente mediante un programa de computación (Tierra) con vistas al ajuste de las curvas a una ecuación polinomial de i = f(v), tal como se muestra en las tablas 3.2 y 3.3. El mismo procedimiento se aplicó para las curvas obtenidas a las temperaturas de 60 y 90°C, en el mismo rango de concentraciones de sólido, para todas las suspensiones de las muestras estudiadas. Los resultados se dan en las tablas 3.1 a 3.6 del Anexo 3.

Con la finalidad de describir el efecto de la temperatura, en la figura 3.8 se presentan las curvas de i = f(v) (D = 100mm), a las temperaturas de 28 y 90°C y para una concentración de 50% de sólido correspondiente a la muestra R-3. Puede verse en la figura, que con el aumento de la temperatura el límite de fluidez de las pulpas aumenta progresivamente, por lo que las viscosidades efectivas de las suspensiones decrecen, lo que provoca una disminución apreciable en las pérdidas hidráulicas .



Figura 3.8 Curvas de  $\Delta P/L$  vs Q que demuestran el efecto de la temperatura.

En las curvas se observan con claridad los tres regímenes de flujo (laminar, transición y turbulento) que están representada por las zonas A, B, C, respectivamente. En relación con esto ultimo, la posibilidad de obtener datos de las tres zonas depende de la concentración de sólidos, fundamentalmente. Así para concentración de 50% se logran las tres zonas, en cambio, para 40% de sólido se observa solamente la zona C.

Es necesario indicar que una de las peculiaridades del flujo de las colas lo constituye la zona transitoria entre el régimen laminar y el turbulento. Así, para una misma concentración ( 40 ó 50 % de peso en sólido ), al incrementar la temperatura se reduce la magnitud de U, lo que indica la destrucción de los lazos estructurales de las colas y un cambio en la distribución del perfil de velocidades por la sección transversal de la tubería, mediante el cambio del régimen de movimiento por la relación V máx. / V med. = 1,27 - 1,68.

Con vista a describir la influencia de la naturaleza de las muestras, en la figura 3.9 se presenta la dependencia i = f(v) (D = 100mm) de las suspensiones correspondiente a las muestras R-1 y R-3, a 90°C y 50% en peso de sólido. En la figura se observa que, para una misma velocidad, el gradiente de presión es mayor para la muestra R-3. Este comportamiento corrobora los resultados de las curvas de flujo (comportamiento reológico) y de los resultados de estabilidad en el Capitulo II. Para ambas muestras se distinguen las zonas correspondientes a los regímenes de flujo laminar y turbulento.

Comportamientos similares se obtienen para todas las muestras, a las tres temperaturas estudiadas y a todas las concentraciones, las cuales no se muestran en el trabajo, pero pueden ser comprobadas a través de los gráficos de i = f(v) presentados anteriormente, tanto en el texto como en el Anexo 3.

| Concentración<br>másica. (C %). | Ecuación.                                                                                      | Coeficiente de correlación. | Desviación<br>estándar. |
|---------------------------------|------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|
| agua                            | i=(-14.0476)*(1)+(26.6143)*(V)+<br>(96.7643)*(V^2)                                             | 0.9999                      | 13.216                  |
| 25                              | i=(1023.3834)*(1)+(-2304.622)*(V)+<br>(2287.4066)*(V^2)+<br>(-762.9451)*(V^3)+(84.9025)*(V^4)  | 0.9933                      | 100.1268                |
| 30                              | i = (-151.5753)*(1)+ (1218.2622)*(V)+<br>(-372.6291)*(V^2)+ (50.2225)*(V^3)                    | 0.9957                      | 65.6221                 |
| 40                              | i=(2382.9303)*(1)+(-3299.1734)*(V)+<br>(2805.6233)*(V^2)+(-856.4800)*(V^3)+<br>(91.1303)*(V^4) | 0.9884                      | 91.7649                 |
| 45                              | i =(53.2449)*(1)+(1229.4922)*(V)+<br>(-279.5508)*(V^2)+(41.9858)*(V^3)                         | 0.9957                      | 85.3446                 |
| 50                              | i=(2403.3956)*(1)+(-2338.5546)*(V)+<br>(1566.4489)*(V^2)+(-197.4389)*(V^3)                     | 0.9965                      | 112.6731                |

Tabla 3.2. Resultados de la elaboración de los datos experimentales (D = 100 mm).

En la tabla 3.7 del Anexo 3 se dan los parámetros de hidrotransporte obtenidos en la instalación semi-industrial para las pulpas de colas (muestra R-1), a diferentes concentraciones 40-50% que siguen el comportamiento de los plásticos Bingham.

El comportamiento de las relaciones i = f(v) obtenidas para las pulpas de cola (que se han descrito en los gráficos) es similar al obtenido por otros autores para suspensiones de caolín, carbón, laterita, serpentina blanda y otros en el flujo de otros materiales por tuberías de distintos diámetros, lzquierdo(1989),Pakrovskaya (1985), Pérez(1970), Smoldriev(1989), Suárez(1989), lo cual demuestra las peculiaridades comunes que

caracterizan el flujo de las hidromezcla por tuberías, independientemente de la naturaleza y propiedades de la fase sólida y del medio dispersante, tal como se han explicado por Smoldriev y colaboradores (1989) (Ver Capítulo I).

3.3 Correlaciones para el cálculo del gradiente de presión para las hidromezclas de cola con sistema trifásico.

3.3.1 Modelo físico para describir el flujo de las suspensiones de cola a través de tuberías.

En el capitulo I (epígrafe 1.10), se presenta un resumen acerca de las estructuras del movimiento para el caso de las hidromezclas trifásicas (conformado por sólido-líquido-gas). Allí se describen varios tipos de estructuras en dependencia del grado de influencia de la fase gaseosa sobre las características de flujo de este tipo de suspensiones. Así se describe la estructura lamelar (obturada), la emulsionada y la de barra o película. En todos los casos, para describir el flujo de los sistemas trifásicos, hay que tener en cuenta la influencia del número de Froude, dado que la presencia de la fase gaseosa impide que la mezcla sólido-líquido llene completamente la tubería. Por consiguiente, el flujo trifásico por tubería se caracteriza por el movimiento del gas en la masa de la hidromezcla en forma de burbujas (que pueden ser de diferentes dimensiones), conformando una película que envuelve la fase sólido-líquido, o formando un pistón por el centro de la tubería.

Durante la realización de los ensayos experimentales correspondiente a la presente Tesis en la instalación semi-industrial a través de la ventana de cristal que se ha descrito en el epígrafe 3.1 y en las pruebas que se llevaran a cabo en el sistema de transportación de cola en explotación en la fábrica, se pudo observar a todas las temperaturas pero con mayor incidencia a 90°C y a bajas concentraciones (30%), los gases amoniacales disueltos en las suspensiones crean burbujas que se desplazan a lo largo de la tubería dentro de la masa sólido-líquido en movimiento; mientras que a alta concentraciones (40-50% de sólidos) se constató que la fase gaseosa se separa en la parte superior de la tubería horizontal y la mezcla espesada se desplaza por la parte inferior de esta. Este cuadro demuestra que las

suspensiones de colas al transportarse a través de las tuberías lo hacen en forma de flujo trifásico según la estructura lamelar u obturada que se describe en el epígrafe 1.10 del Capitulo I.

Tal como se explica en el epígrafe señalado para tuberías horizontales, la caída de presión total por unidad de longitud de la suspensión trifásica se debe a los efectos de fricción más una contribución causado por la aceleración de la mezcla como resultado de expansión del gas. Es por ello que, para un sistema trifásico la caída de presión en la tubería resulta mayor que para un sistema bifásico sólido-líquido en iguales condiciones de operación.

Para la determinación de la caída de presión por unidad de longitud (pendiente hidráulica) para el flujo trifásico de la cola se propone utilizar la relación siguiente:

$$i = \frac{\Delta p}{L} = \varphi \frac{2f \cdot \rho \cdot v^2}{D}, \quad \mathsf{Pa/m}.$$
 (3.4)

Donde: i – pendiente hidráulica durante el movimiento de la mezcla trifásica.

f – coeficiente de fricción. Se estima por las ecuaciones (1.17) a (1.20) ó por la figura 5 (Anexo1).

 $\varphi$  – coeficiente de corrección que tiene en cuenta la presencia de vapores de amoniaco en la mezcla, y que ocasionan efectos hidrodinámicos adicionales, así como que impiden el llenado de la tubería por la pulpa.

Un valor medio de  $\varphi = \varphi(Fr)$  (quedando implícito el He) puede ser estimado por la ecuación (3.5) o por la figura 3.11.

 $\varphi = (7.621)^{*}(1) + (0.314)^{*}(Fr) + (2.122)^{*}(1/Fr) + (-2.877)^{*}(\sqrt{Fr}) \dots (3.5)$ 

Fr – criterio de Froude, determinado por la velocidad promedio de la mezcla. Los resultados del ajuste de mínimo cuadrado y la validación del modelo para calcular  $\varphi$  por la expresión 3.5 aparece reflejada en la tabla 3.8 del Anexo 3. En la figura puede verse que el coeficiente de fricción es una función del Re y del He para el régimen laminar, mientras que para la zona turbulenta prácticamente solo depende del Re. El comportamiento de las curvas es similar al mostrado en la figura 5 (Anexo 1), para sistemas bifásicos, pero con valores de f muy superiores a los de esta.



Figura 3.10 Curvas de f vs Re para diferentes valores del número adimensional He.

A partir de los resultados elaborados, en este trabajo, se obtuvo una correlación que permite estimar el coeficiente de fricción experimental en la zona turbulenta, la cual se da a continuación:

 $f_{exp} = \frac{10^{C}}{\text{Re}^{1,0621}}$ (3.3) C = 3,7037 - 6,3205\*10<sup>-6</sup>He

Esta expresión se obtuvo con un coeficiente de correlación de 0,9748, y resulta válida para valores de He = 44000 - 100000, y Re = 10000 - 50000.

Se ha visto en el epígrafe 1.9 (Capitulo I) que el coeficiente de fricción, para el flujo de materiales que siguen el modelo reológico de Bingham, es una función del número de Reynolds, del número de Hedstrom y del número de Froude, los cuales se definen en la ecuación (1.27). Para sistemas bifásicos, el coeficiente f puede ser estimado por las ecuaciones (1.18), (1.19) y (1.20) en dependencia del régimen de flujo.



Figura 3.11 Coeficiente de corrección medio  $\varphi$ , para las pérdidas hidráulicas en función del Fr en tuberías de D = 100 y 150mm.

# 3.5.2 Construcción de las curvas del sistema.

Para la construcción de las curvas del sistema con la ayuda del programa Microsoft Excel se representan en el gráfico los valores de altura de la red contra los valores de caudal (tabla 3.6), para los cuales se determinaron, haciéndola interceptar con la curva de la bomba, obteniéndose así el punto de trabajo del sistema para la línea A L = 1654 m, según se muestra en la figura 3.13.

3.6.4 Resultados de la modelación de la ecuación de altura y potencia de la bomba.

| $H = A + B \cdot Q + C \cdot Q^2  \dots$ | .(3.17) |
|------------------------------------------|---------|
| $N = D \cdot Q + E \cdot Q^2 + F  \dots$ | (3.18)  |

Donde:

H: Carga. (m)

N: potencia.(Kw.)

Q: caudal (m<sup>3</sup>/s)

A,B,C,D,E,F: coeficientes que se obtienen de las curvas dadas por el fabricante de bombas.Con ayuda del programa MathCAD y del sistema de ecuaciones, se forma una matriz para determinar los coeficientes A,B,C,D,E,F.

|              | Para el | Para la |
|--------------|---------|---------|
| Coeficientes | agua    | cola    |
| Α            | 70      | 43      |
| В            | 72.654  | 44.834  |
| C            | 74.32   | 45.851  |
| D            | 60      | 33.     |
| E            | 61.345  | 33.842  |
| F            | 62.225  | 34.323  |

Tabla 3.2. Valores de los coeficientes (agua y cola).

Así se obtienen las expresiones que describen la carga y la potencia de la bomba, en función del caudal:

| Para el agua                                 | Para la cola                                       |        |
|----------------------------------------------|----------------------------------------------------|--------|
| $H = 70 + 72.654 \cdot Q + 74.32 \cdot Q^2$  | $H = 43 + 44.834 \cdot Q + 45.851 \cdot Q^2 \dots$ | (3.19) |
| $N = 60 \cdot Q + 61.345 \cdot Q^2 + 62.225$ | $N = 33 \cdot Q + 33.842 \cdot Q^2 + 34.323 \dots$ | (3.20) |

# 3.6. Sistema de ecuaciones para determinar los parámetros racionales del sistema de hidrotransporte.

Por racionalización de un sistema de hidrotransporte se entiende la selección de aquellos valores de los parámetros de dicho sistema que

garantizan su mayor efectividad. Las variables de operación más importantes en el hidrotransporte lo constituyen la velocidad del flujo de la pulpa y la concentración de material sólido en él. Con el aumento de la velocidad y la concentración se puede disminuir el diámetro de la tubería (por tanto, disminuye el peso de la tubería metálica y su costo) y utilizar bombas de menor capacidad. Esto garantiza la disminución de las inversiones básicas, pero, al mismo tiempo, se aumentan las pérdidas de presión; es decir, crece el gasto de energía eléctrica, y se incrementa el desgaste del equipamiento. Esto conlleva al aumento de los gastos de explotación. Por consiguiente resulta obvio la necesidad de calcular aquellos valores de velocidad y concentración de la pulpa que posibiliten obtener los gastos de explotación mínimos.

Para la determinación de la velocidad racional del flujo de la pulpa (Dakukin 1987), propuso la correlación (3.21):

$$X_{rac} = \left[\frac{1.3 \cdot V1 - V2 \cdot X_{rac}^{-0.5} - 0.5 \cdot V3 \cdot X_{rac}}{1.2 \cdot (V4 + V5 + 1)}\right]^{0.6} \dots (3.21)$$

Donde: X<sub>rac</sub> – Es la relación entre las velocidades racional e inicial:

- $(X_{rac} = \frac{V_{rac}}{V^o}).$
- V<sup>0</sup> Valor inicial de la velocidad del flujo, en (m/s); (con frecuencia es la velocidad crítica).
- Durante la selección de la velocidad óptima es necesario mantener la condición.

 $V_{rac} \ge V_{CRIT}$  (3.22)

Si esta condición no se cumple, entonces en calidad de la velocidad de trabajo se toma la crítica.

C<sub>b</sub>- Costo de una bomba. C<sub>b</sub>=8 907. 69 USD.

E- Coeficiente normativo de efectividad de la inversión básica. E=33,3.

- $n_b$ -Cantidad de bomba en el sistema.  $N_b$ =5.
- S'- Concentración inicial.%

Q<sub>T</sub>- Cantidad de sólido transportado en un año, T

- $\rho_{T}$  Densidad del sólido, Kg/m<sup>3</sup>
- L- Longitud de la tubería, m.
- r- Tarifa de pago de la energía eléctrica.

La concentración racional de la pulpa puede ser estimada por la reacción propuesta por Dakukin(1987):

$$Y_{rac} = \left[\frac{V2}{0.6[V1 + V3 \cdot (1 - b1) + 1] - 0.4 \cdot V3 \cdot b1 \cdot Y_{rac} + 0.62V4 \cdot b2 \cdot Y_{rac}^{0.3} - 1.5[V4(1 - b2) + V5]Y_{rac}^{0.9}}\right]^{25} \dots (3.23)$$

Donde: Y<sub>rac</sub>= S<sub>rac</sub>/S

S´ - Valor inicial de la concentración.

$$V_{1} = \frac{28.2(E+0.073) \cdot (0.14C_{b}H+0.85) \left(\frac{Qt}{\rho t}\right)^{0.15} \cdot (v^{*})^{-1.85} \cdot (S)^{0.15} \cdot \delta 1}{n \cdot r 1 + 9.3 \cdot r 2} \quad \dots \dots (3.24)$$

$$V_{2} = \frac{0.48(E+0.073) \cdot (0.13 \cdot C_{b}H+0.78) \cdot \left(\frac{Qt}{\rho t}\right)^{0.65} \cdot (v^{*})^{-2.35} \cdot (S)^{-0..35} \cdot \delta 1}{n \cdot r 1+9.3 \cdot r 2} \dots (3.25)$$

$$V_{3} = \frac{2300(E+0.036) \cdot n \cdot n\varepsilon^{0.63} (v^{*})^{-0.85} (S)^{0.04} (0.75+1.67 \cdot S)^{0.37} \left(\frac{Qt}{\rho t}\right)^{-0.22} \cdot Lv^{-0.63}}{n \cdot r 1+9.3 \cdot r 2} \dots (3.26)$$

$$V_{4} = \frac{196(E+0.15) \cdot n \cdot n\varepsilon^{0.2} (v^{*})^{-0.25} (S)^{-0.67} (0.75+1.67 \cdot S)^{0.8} \left(\frac{Qt}{\rho t}\right)^{-0.07} \cdot Lv^{-0.2}}{n \cdot r 1+9.3 \cdot r 2} \dots (3.27)$$

$$b_1 = \frac{0.62 \cdot S}{0.75 + 1.67 \cdot S} \tag{3.28}$$

$$b_2 = \frac{1.34 \cdot S}{0.75 + 1.67 \cdot S} \quad \dots \tag{3.29}$$

Las dependencias ( 3.21) y (3.23), se resuelven por el método de aproximación sucesiva (aplicar método de Newton). Inicialmente se toma ( $X_{rac} = Y_{rac} = 1$ ), y se colocan en la parte derecha de las ecuaciones (3.21) y (3.23). Seguidamente, el ciclo de cálculo ( $X_{rac}$  y  $Y_{rac}$ ), se repite. El cálculo se

termina, cuando la diferencia entre los valores calculados y los supuestos sean pequeños. Con frecuencia son suficientes tres o cuatros ciclos de cálculo.

Es necesario señalar que las dependencias (3.21) a (3.29), fueron elaboradas para materiales sólidos con una granulometría no mayor de 3 mm, con resultados confiables en esos límites.

A continuación, se procede a ilustrar con su ejemplo el uso del sitema de ecuaciones propuesto.

Para resolver las ecuaciones del tipo Z=f(z) se pueden utilizar diferentes métodos analíticos, numéricos y gráficos. Debido a la complejidad que presenta el sistema de ecuaciones obtenidas para la determinación de X<sub>rac</sub> y Y<sub>rac</sub>, se prefiere utilizar un método gráfico-numérico, apoyándose en el software Derive for Windows, versión 4.0. Para ello se transforman las ecuaciones del tipo Z=f(z) a ecuaciones del tipo 0=f(z)-z y se grafica la función U=f(z)-z para determinar si existían ceros de esta función y en que intervalos puedan estar situados. En ambos casos se determinó el comportamiento de las funciones U=f(v)-v y U=g(c)-c donde ambas presentan dos ceros (interceptos con el eje horizontal) cada una. A partir de conocer en que intervalos se encontraban estos ceros y usando la opción SOLVE de este software se obtuvieron, por el método de Bisección, las raíces de cada ecuación.

 $X_1=0,063 289$  $X_2=0,754$  $Y_1=1.14 979$  $Y_2=17.7 597$ 

Ahora toca decidir, para cada caso, cual es la solución más adecuada.

Para el caso de la concentración es adecuado exigir que  $C_{rac} \le C_{cr}$ . Puesto que  $C_{rac} = Y_{rac} * Y_{ini}$ ;  $Y_{ini} = 35$ ;  $Y_1 = 1,14979$ ;  $Y_2 = 17,7597$ , entonces  $C_{rac1} = Y_1 * 35 = 40,24$  y  $C_{rac2} = Y_2 * 35 = 62,1589$ ; sobre la base de que  $C_{cr} = 60$ , se toma  $C_{ract1} = 40,24$  265  $\le 60 = C_{cr}$ .

Para el caso de la velocidad es adecuado exigir que:  $V_{opt} \ge V_{cr}$ . Puesto que  $V_{rac}=X_{rac}*V^0$  y  $V^0=0.99$  m/s;  $X_{rac2}=0.7616$  y  $X_{rac1}=0.0639282$ ; entonces,

 $V_{rac1} = X_{rac1} * 0,99 = 0,063289 \text{ ; } V_{rac2} = X_{rac2} * 0,99 = 0,754 \text{ ; de ahí que } V_{cr} = 0,44 \text{ m/s, por lo tanto, se toma}$  $V_{rac2} = 0,754 \ge 0,44 = V_{cr}.$ 

# CAPITULO IV . VALORACIÓN TÉCNICO – ECONÓMICA.

## 4.1. Valoración Técnico- Económica.

Una gran parte de los gastos durante el hidrotransporte lo constituyen los gastos de energía eléctrica, por lo que su economía es una de las direcciones estratégicas de la producción en la actual etapa. Una correcta selección y organización en la explotación del equipamiento de bombeo en régimen económico permite el ahorro de energía eléctrica y aumentar la efectividad del transporte hidráulico.

Para proyectar y explotar con efectividad el equipamiento de las instalaciones de hidrotransporte es necesario seleccionar correctamente el equipamiento de bombeo para las condiciones concretas de explotación, determinar y analizar el régimen de trabajo de las bombas en el sistema de hidrotransporte en correspondencia con los requerimientos exigidos y, considerando mínimo los gastos de energía eléctrica, determinar y analizar los indicadores técnico - económico de trabajo del sistema de hidrotransporte.

Dentro de los indicadores técnico - económicos principales de la instalación de hidrotransporte se encuentran: productividad anual de la instalación por el sólido transportado , en m<sup>3</sup>/año; potencia instalada sumaria del motor, en kW.; gasto anual de energía eléctrica kWh/año; gasto específico de energía eléctrica por 1 m<sup>3</sup> de material transportado, kWh/m<sup>3</sup>; costo de energía eléctrica gastado en la transportación de 1 m<sup>3</sup> de material sólido \$/m<sup>3</sup>.Por otra parte los costos de mantenimiento decrecen al disminuir las y fallas y averías del equipamiento. También disminuye el costo total de los descuentos anuales de los activos fijos al incrementarse el tiempo de vida útil de la instalación.

En la tabla 4.1 se muestran los resultados de los principales indicadores tomados en cuenta en la determinación de los gastos de explotación de la instalación actual trabajando en dos condiciones (a régimen normal de trabajo (1) y a régimen cavitacional (2)) de operación según la metodología propuesta por González B.M.(1997).

En condiciones normales de operación, la instalación trabaja con una capacidad de 160 m<sup>3</sup> / h; sin embargo cuando entra en régimen cavitacional su capacidad se reduce a la mitad, ocasionando pérdidas por mayor consumo de energía y mantenimiento de la instalación, tal como se refleja en la tabla 4.1 con el correspondiente incremento de los costos de producción de la Empresa y una menor productividad. Por consiguiente, si se logra eliminar el régimen cavitacional se ahorrarán 3,2 \$ USD por cada m<sup>3</sup> de cola transportada, con un ahorro en los gastos de explotación de 40 340 \$USD anualmente.

4.1 . Costo de transportación de un m<sup>3</sup> de cola, \$ USD.

| INDICADORES                                                | 1          | 2          |
|------------------------------------------------------------|------------|------------|
| Gastos de salario del personal de operación.               | 17769.7    | 17769.7    |
| Gastos por consumo de agua para disminuirle la             | 32850      | 32850      |
| temperatura a la cola.                                     |            |            |
| Gastos de energía eléctrica.                               | 143848.4   | 182208     |
| Gastos por iluminación.                                    | 78.84      | 78.84      |
| Gastos imprevistos.                                        | 14         | 14         |
| Gastos por mantenimiento.                                  | 3772       | 4883       |
| Gastos de amortización de las bombas.                      | 2672.307   | 2672.307   |
| Gastos de amortización de las tuberías y soportes.         | 4892.065   | 4892.065   |
| Gasto del salario del personal indirecto                   | 813        | 813        |
| Total ( $G_b$ )                                            | 205943.112 | 246180.912 |
| Gasto para transportar un m <sup>3</sup> de cola en 3.5 Km | 1.3        | 4.50       |
| (USD)                                                      |            |            |

Teniendo en cuenta el análisis de lo ilustrado en la tabla 4.1, acerca de la situación actual de la Planta de Recuperación de Amoníaco, se concluye que, aplicando los resultados obtenidos en la presente Tesis, es posible, lograr mejoras sustanciales favorables a la producción y a la economía de

la fábrica. A manera de ejemplo, se desarrolla en forma resumida, a continuación, un estudio de factibilidad del mejoramiento del sistema de transporte de las colas en la Empresa Che Guevara.

4.2 Resumen de la factibilidad del mejoramiento de la eficiencia del sistema de transporte de cola en la Empresa Comandante Ernesto Ché Guevara.

El estudio sobre el mejoramiento de la instalación de colas de la Planta Recuperación de Amoniaco de la Empresa "Cmdte Ernesto Ché Guevara", a fin de mejorar su eficiencia se desarrolla sobre la base de determinar los parámetros racionales de trabajo, que permitan lograr estabilidad y disminuir los costos en el transporte de las colas. Para ello se ha tenido en cuenta el aumento de capacidad requerido por la Planta para los próximos 5 años. Como resultado de este estudio se recomienda el cambio de la instalación actual, en específico, el cambio de las actuales bombas por otras bombas centrífugas especialmente diseñadas para el bombeo de pulpas abrasivas, tipo PKB 2001, con una variación de la potencia de 75 KWh a 55 KWh, y el cambio del diámetro de tuberías del actual D-200 a D-250 para mejorar las características de flujo de la pulpa.

# Alcance

En este resumen se pretende presentar un cálculo de prefactiblidad de la instalación, con vistas a determinar desde el punto de vista económico financiero, las características del proyecto citado.

# Modelación

Se ha utilizado un modelo establecido para 7 años en correspondencia con el tiempo de vida útil calculado a la instalación, con 6 meses para la contratación, entrega, construcción y montaje y 6,5 años de explotación. Ha sido elaborado el cálculo del costo de inversión, estado de resultados para el proyecto, flujo de caja y flujo de fondos, así como el cálculo del financiamiento requerido.

# Ingresos

Inicialmente fueron calculados los gastos de la instalación actual y de la nueva instalación, resultando un ahorro para el proyecto en los siguientes elementos:

Ahorro de electricidad (por concepto de instalar bombas de menor potencia), calculado a un precio de 70 USD/MW).Ahorro de consumo de agua (m<sup>3</sup> por año a un precio de 0,15 USD/m<sup>3</sup>). Ahorro por mantenimiento y materiales auxiliares de la operación, por ser este equipamiento más fiable. Ahorro por gastos imprevistos, el cual se valoró conservadoramente en 13600 dólares para el primer año, sobre la base de una reducción esperada del índice de rotura a de 0,20 a 0,03.También se consideró el ahorro de no ejecutar el recambio de bombas de la instalación actual, la cuál se encuentra depreciada a un 75 %, en el segundo año de vida del proyecto. Este ahorro se proyectó para una sola vez en los 7 años, a pesar de que la instalación actual tiene un tiempo de vida calculado en 3.5 años y la proyectada de 6,25 años.

#### Gastos de Inversión

La inversión en activos fijos comprende básicamente el recambio de tuberías y bombas, estimadas sobre la base de ofertas y estimados actualizados a precios del año 2002, revisados con personal de la Empresa Importadora del Niquel y de la Subdirección Comercial de la Ché Guevara. La construcción y montaje de la instalación se calcularon sobre la base del costo de los activos fijos que se incorporan, considerando 37% para el montaje y desmontaje de las bombas y 60 % para el de las tuberías. Se consideran gastos preoperativos consistentes en el proyecto de investigación realizado, un proyecto de ingeniería y licencia ambiental. El total de inversión alcanza 223.5 MUSD.

#### Capital de trabajo

Se reporta un incremento de gastos por este concepto al considerarse un aumento de la inmovilización de efectivo, como resultante del proceso de inversión y un aumento de capacidad del 5% en el uso de la instalación, a partir de la generación adicional de colas como resultado del aumento de capacidad de la planta y la reducción de la ley de mineral en el primer año.

#### Gastos de Operación

Los gastos de operación de la nueva instalación son similares a los de la actual, exceptuando los gastos de electricidad, mantenimiento, agua e

imprevistos que resultan inferiores a los actuales y de ahí un ingreso neto para el proyecto. Se consideró un incremento de los gastos financieros a consecuencia del pago de intereses relacionados con la inversión.

## Indicadores de factibilidad

El valor neto actualizado del proyecto, calculado para una tasa de rendimiento del 15%, como promedio para proyectos similares, resulta positivo en 113,6 MUSD, al término de los 6,5 años de operación, lo que indica que el proyecto resulta económicamente factible y que como resultado de su realización se generan ingresos para la entidad.

La tasa interna de retorno de 44% indica el límite del costo del financiamiento requerido, muy por encima del disponible que se estima en 11,5 % de interés anual, lo que confirma la factibilidad del proyecto.

El período de recuperación es de solo 11 meses. Si no fuera considerada la necesidad de renovar ningún equipamiento de la instalación actual, en los próximos años aún el periodo de recuperación del proyecto no superaría los 3.2 años.

### Financiamiento

Se considera una ejecución al crédito de 190.0 MUSD, al 11.5 %, con un período de repago de 4,5 años, con un período de gracia de 6 meses y un gasto financiero total de 67.5 MUSD. Estas condiciones están dentro de las normalmente consideradas para la Empresa en su etapa de expansión. El financiamiento se proyectó únicamente a partir de los recursos que genera el proyecto por ahorros.

Los principales indicadores obtenidos en este estudio se dan en las tablas 4.1 a 4.5 del Anexo 4.

# 4.2. Conclusiones parciales

1.- El análisis económico realizado revela que los principales gastos de la instalación son provocados por la cavitación incrementando el gasto energético y los gastos por concepto de mantenimiento. Si se lograra eliminar este fenómeno del sistema, se ahorrarían 3,2 USD por cada metro cúbico transportado con un ahorro de los gastos de explotación de 40 337,8 USD.

2.-En el estudio de factibilidad de la propuesta de mejora de la instalación industrial, para las condiciones de operación de la Planta de Recuperación de Amoniaco, se obtienen los siguientes parámetros de rentabilidad: El valor neto actualizado del proyecto, calculado para una tasa de rendimiento del 15%, resulta positivo en 113,6 MUSD, al término de los 6,5 años de operación; la tasa interna de retorno de 44%, un 11,5 % de interés anual, una recuperación es de solo 11 meses. el periodo de recuperación del proyecto no superaría los 3.2 años.

## CONCLUSIONES GENERALES.

- 1.- La caracterización del sólido y de la hidromezcla de la cola realizado en la presente tesis, además de ser una novedad, constituye una necesidad para mejorar la actual tecnología de manipulación y transportación de la cola del proceso CARON.
- 2.- La investigación permitió establecer que las colas constituyen un sistema polidisperso con predominio de partículas inferiores a 43 µm, con partículas en forma de elipsoides de revolución, que presentan un índice de aplastamiento de 0,58 y un diámetro equivalente promedio de 0,04 mm, y , además , que la fase sólida presenta una composición química bastante estable y conformadas por varias fases mineralógicas, siendo las fases principales, la Magnetita y la Maghemita, esta última , al parecer, surge por oxidación de una parte de la magnetita como consecuencia de la acción de las condiciones de operaciones actuales en las Plantas de Lixiviación y la de Recuperación de Amoníaco. La caracterización magnética demuestra que la fase sólida posee propiedades típicas de los materiales ferrimegnéticos, debido a al alto contenido de Magnetita y Maghemita.
- 3.- Los ensayos de estabilidad confirman que dado el alto contenido de partículas finas, las hidromezcla de las colas se comportan como un sistema coloidal, cuyos valores de p.z.c en agua destiladas son similares a las reportadas en la literatura para suspensiones de Magnetita y de Maghemita, como era de esperar , las magnitudes de los p.z.c disminuyen hacia valores de pH más ácidos en las pulpas preparadas en agua amoniacal. Se comprueba la gran influencia que ejercen estas propiedades superficiales sobre la reología y de la sedimentación de las pulpas.
- 4.- La caracterización reológica permitió establecer el carácter no newtoniano de las colas, dependiendo grandemente su comportamiento de la concentración de sólidos. Así se observa un flujo seudoplástico a concentraciones de 25 35 % en peso y un comportamiento plástico Bingham para valores mayores de 40 % en peso , a todas las temperaturas estudiadas (28-90 ° C).

- 5.- Se obtuvo experimentalmente las curvas de estabilidad y los puntos de carga cero (p.z.c.) en agua destilada y en agua amoniacal industrial. Los valores de los p.z.c. en agua destilada son cercanos a los registrados en la literatura para suspensiones de Magnetita y Maghemitita en agua destilada ( pulpas de la Empresa "Comandante Ernesto Che Guevara"), estos valores se desplazan hacia la izquierda es decir hacia la zona más ácida ( pH más bajo) lo que influye considerablemente en la reología de las pulpas y sedimentación de los sólidos en las mismas.
- 6.- Las investigaciones de los parámetros del transporte hidráulico de las colas de la Empresa " Comandante Ernesto Che Guevara" con un componente gaseoso, mostraron mayores caídas de presión y factores de fricción que los reportados en la literatura para pulpas bifásicas normales, bajo las mismas condiciones de trabajo. La composición mineralógica, la concentración y temperatura de las muestras ejercen gran influencia sobre el gradiente hidráulico. Se obtuvo las correlaciones gráficas y expresiones matemáticas que describen el flujo de esas colas por tuberías; así como el factor de fricción para régimen laminar y turbulento.
- 7.- La velocidad racional de transportación se obtuvo para el inicio del régimen turbulento a partir de criterios de menor consumo de energía por toneladas de sólidos transportados, los que resultaron inferiores a los aplicados en la actualidad y reportados en la literatura para velocidades críticas de pulpas bifásicas normales. En las velocidades racionales obtenidas, el sólido se mantuvo en suspensión en la pulpa y no se observó sedimentación alguna.
- 8.- El conjunto de correlaciones obtenidas permitió conformar un modelo matemático aplicado para la metodología de cálculo de las instalaciones de transporte de colas trifásicas en el proceso CARON, que permitió calcular las instalaciones, establecer regímenes racionales de trabajo y seleccionar adecuadamente el equipamiento; así como valorar el trabajo de las existentes, lo que constituye el principal problema de estas en la actualidad.

## RECOMENDACIONES

- 1.- Recomendar a la Empresa Comandante Ernesto Che Guevara la introducción de los resultados de esta tesis con vista a eliminar el régimen de operación cavitacional que actualmente se presenta en el sistema de bombeo de las colas con el objetivo de disminuir el consumo el consumo de agua y energía eléctrica que provocan pérdidas considerable a la fábrica.
- 2.- Proponer a la dirección de la Empresa "Comandante Ernesto Che Guevara ", un proyecto para la evaluación y /o modificación de las instalaciones que operan con colas, con vista a la ampliación de las capacidades instaladas sobre la base de la reducción de los consumos energéticos, y de agua, y de gastos de mantenimiento.
- 3.- Propiciar que alguna institución elabore una tecnología que permita la separación de la Magnetita y de la Maghemitita de las colas de manera que estas constituyan una posible fuente de materia prima de estos óxidos ferrimagnéticos para ser utilizadas en otra rama de la economía nacional que lo requiera, el cual ayudaría a mejorar el balance económico de la Empresa.
- 4.-Recomendar a CITMA que se realice un estudio acerca de la anomalía magnética que causa la acumulación de las colas en las proximidades de la ciudad de Moa, dado su impacto ambiental con posibles consecuencias sobre la salud de los habitantes, flora y fauna de la ciudad.
- 5.- Aplicar los aportes metodològicos señalados en la introducción de la tesis en los planes y programas de estudio de las carreras indicadas.

- ALDANA, E.V. Factores que influyen sobre la compactación de sedimentos en el proceso de sedimentación de pulpas de lateritas. Trabajo de diploma. Universidad de Oriente, Facultad de Ingeniería Química, 2000.
- ALEXANDER, B.I. Influencia de la viscosidad del liquido sobre la resistencia de relleno. Investigaciones aplicadas sobre hidrotransportación de productos del beneficio de minerales. Leningrado: Mecanobr, 1987. 119 p.
- ALEXANDRO, B.I; A.A. KULESHOV. Investigación y establecimiento de los regímenes de la transportación de las colas del beneficio de la Fca. No. 3 de Dshezkazgan GMK. Leningrado, 1986.
- ALMEIDA, G.M. Evaluación de la eficiencia energética de la planta de recuperación de amoníaco de la empresa Comandante Ernesto Che Guevara. Trabajo de diploma. Instituto Superior Minero Metalúrgico, Facultad Metalurgia Electromecánica, 1998.
- 5. ANDREIEV, V.I. Manual del constructor de maquinaria. Moscú: Editorial UNESTORGIZDAT, 1987. 3 t.
- ANDREIEV, S.E. Trituración, desmenuzamiento y cribado de minerales. Moscú: Editorial Mir, 1980.
- ANEIROS J.P. Problemas de diseño de elementos de máquinas. La Habana: Ediciones ENSPES, 1983.
- ASME. Code design formules for cylinders under internal pressure, 2000.
- ATSUSHI, T. et. al. Effect of Temperature on rheological properties of Suspensions. *Non – Newtonian Fluid Mechanics*, 1987, 26 (175): 6-16.
- 10. Auditoria ambiental de la explotación minero metalúrgica del Níquel Comandante Ernesto Che Guevara, 1998.
- 11.BEYRIS. J P. Sedimentación de la pulpa cruda en la Empresa Comandante Pedro Soto Alba. Trabajo presentado en el Primer

Coloquio Científico Politécnico del ISPJAM. Santiago de Cuba, 1989.

- 12. BEYRIS. J. P. Mejoramiento del proceso de Sedimentación de la pulpa del mineral lateritico de la Empresa Comandante Pedro Soto Alba.( Moa Níkel S.A), Tesis Doctoral, ISMM, 1997.
- 13. BIRD, R.B.; W.E. STEWART; E.N. LIGHTFOOT. Fenómenos de transporte. Barcelona: Editorial Reverté, 1973
- 14. BLAISDELL, A.E. Statistics in Practice. Washington: Saunders College Publishing, 1993.
- 15. BLESA, M.A. Solid state ionics 101 103, 1235 (1997).
- 16. BLESA, M.A y col. Colloid interface Sci. 99,32 (1984)
- 17. BOCCACINE, A.R. Viscosity of porous Sintered Glasses. *Journal* of *Materials Science*, 1995, (2): 335-348.
- BROW, G.G. Operaciones básicas de la ingeniería química. La Habana: Pueblo y Educación, 1965.
- CASTELLANOS, J. Metalurgia Extractiva de los Minerales Oxidados de Níquel. La Habana: Instituto Cubano del Libro, 1972. 198p.
- 20. CATÁLOGO PUZMEISTER. Bombas Industriales. Federal Republic of Germany, 1996.
- 21. CEPRONIQUEL. Estudio de ingeniería. Empresa Comandante Ernesto Che Guevara. Moa, 1999.
- 22. CERPA, A. y col. Mineral contents and particle-size effect on the colloidal properties of concentrated lateritic suspensions. *Clay and clays minerals*, 1999, 47 (515): 20-25.
- 23. CERPA, A. Propiedades de flujo de suspensiones minerales lateríticas. Influencia de la mineralogía y de las propiedades coloide-químicas. Tesis de doctorado. Universidad Autónoma de Madrid, España, 1997.
- 24. CERPA, A. y Garcell. L .R Propiedades superficiales y reológicas de suspensiones minerales lateríticas. La Habana: Informe al evento Metalurgia 98, 1998.

- 25. CERPA, A.y col. Rheological properties of. concentrated lateritic suspensions. *Prog. Colloid Polym Science*, 1996, 100 (226): 6-12.
- 26. CESIGMA. División América. Estudio de impacto ambiental, proyecto de explotación minero–metalúrgico Cupey, Las Camariocas. La Habana, 1997.
- 27. CHANG, C.A. Análisis de la solubilidad de los complejos amoniacales de Co 2+. *Revista Minería y Geología*, 1984, (1): 7-15.
- 28. CHENG, D.C. Viscosity concentration equations and flow curves for suspensions. *Chemistry and Industry*, 1980, 17 May: 18-23.
- 29. CHERKASSKI, V.M. Bombas, Ventiladores y Compresores. Moscú: Editorial Mir, 1986.
- 30. CHILKINSON, I.L. Líquidos no newtonianos. Moscú: Mir, 1964. 216p.
- 31. CHISTAKOV, V.; E. AGUILILLA DIÉGUEZ. Técnicas de medición industrial. La Habana: Pueblo y Educación, 1986.
- 32. CHONG, H. Rheological testing and modeling of fresh nigh performance concrete. *Material and Structures*, 1995, (28): 1-7.
- 33. CHRISTELLE, T. Syntesis of epoxy-amino multiacrylic prepolymers by relative extinsion. *Journal of applical polymer science*, 1996, 59: 415-423.
- 34. CORNELL, R.M.; U. SCHWERTMAN. The Iron Oxides. New York: VCH, 1996
- COSTA, G.M. et.al. A comprehensive Moessbauer study of highly substituted aluminum maghemite. *Geochemical Society*, 1996, (5): 93-104.
- 36. CUETO, R.F. Descontaminación del licor residual WL de la compañía Moa Níquel. Descripción y análisis de las principales variantes tecnológicas usando las colas del mineral de la Fábrica Ernesto Che Guevara y otros reactivos. Moa: Centro de Investigaciones de la laterita, 1998.

- 37.CUETO, R.F. Propuesta tecnológica para descontaminar licor residual WL de la compañía Moa Níquel. Moa: Centro de Investigaciones de la Laterita, 1997.
- DANIELS, F; R.A. ALBERTY. Físico-química. La Habana: Pueblo y Educación, 1963. 834 p.
- 39. DARBY, R. Laminar and turbulent pipe flows of non newtonian fluids, in flow dynamics and transport phenomena, 2000
- 40. DARBY, R. Take the mystery out of non-newtonian fluids. *Chemical Engineering*, 2001, (3): 66-73.
- 41. DARIAS, M. Introducción a la Química Coloidal. La Habana: Editorial Pueblo y Educación, 1987.
- 42. DEMAI, A; F. SOUBIES. Aluminous maghemite as palaeoenvironemental marker in lateritic soils; the case study of the Salitre areas, Minas Gerais, Brazil. Seventh International meeting; Eurolat' 96. Geociencias (Aveiro), 1996: 25-30.
- 43. DAKUKIN.V.P. Análisis técnico –económico de un sistema de hidrotransporte por tubería. I.M.L, Leningrado, 1987.
- 44. DESHVARSHEISCHILI, A.B. Sistemas de transporte por tuberías en las plantas de beneficio de minerales. Niedra: Moscú, 1981.
- 45. DÍAZ, A. Manual de hidráulica aplicada. Santiago de Cuba, Ediciones ISPJAM, 1990.
- 46. DÍAZ, A. Selección del diámetro óptimo de tuberías para fluidos no newtonianos viscosos (segunda parte) flujo por bombeo. *Revista Tecnología Química*, 1999, 19(1): 18-27.
- 47.DSHUNUSOV, Y. Elaboración del equipamiento complejo para la sedimentación e hidrotransportación de las pulpas finas dispersas. Tesis de Doctorado. Leningrado, 1988.
- 48. DUNCAN, J. Introducción a la química de superficie y coloidal. Madrid: Editorial Alambra, 1977.
- 49. DYRAND, R. Transporte hidráulico de los materiales sòlidos por decantación. Paris, 1952.
- 50. ECONOSTO. ROYAL General catalogue valves, fitting and related equipment. Rótterdam, marzo 2000.

- 51. EMSEV, B.T. Hidromecánica técnica. Moscú: Editorial Construcción de Maquinarias, 1987.
- 52. EUDOKINOV, P.D. Proyecto y explotación de planta y beneficio de cola. Moscú, 1978.
- 53. FALCÓN, J. Sedimentación de minerales lateríticos. *Revista Minería y Geología*, 1995, (2): 16-26.
- 54. FERRERO, J.M. Tratado de hidráulica. Madrid: Editorial Alambra, 1982.
- 55. FERRO, A. Estudio de la sustitución de las pinturas asfálticas convencionales por emulsiones de crudo cubano con emulgente P. Tesis de Maestría, Universidad de Oriente, Facultad de Ingeniería Química, 2000.
- 56. FOMENKO, T.G. Procesos de enriquecimiento de minerales por gravitación. Moscú: Editorial Mir, 1980.
- 57.FONT, G.; A. SUÁREZ. Diseño de equipos de transferencia de calor para el precalentamiento indirecto de la pulpa en la planta de lixiviación. Trabajo de Diploma. Universidad de Oriente, Facultad de Ingeniería química, 1995.
- 58. FOTELNY, I. Effect of the mixing conditions on the phase structure of pp/ps blends. *Journal of Applied Polymen Science*, 1996, 59: 55-164.
- 59. FRANCO, P.D. Equipos de bombeo. La Habana: Pueblo y Educación, 1981. 212 p.
- 60. FREUD, E.J; A.G. SIMON. Modern Elementary Statistics. Eighth edition. Washington: Prentice Hall, 1992.
- 61.GARCELL, L. Características reológicas y mineralógicas de las pulpas limoníticas de Moa en períodos de sedimentación crítica. Trabajo investigativo. ISPJAM, Facultad de Ingeniería Química., 1984.
- 62. GARCELL, L. Caracterización reológica de la pulpa de limonita de Moa. *Revista Tecnología química,* 1992, (1): 5-9.

- GARCELL, L. Comportamiento reológico de la pulpa laterítica. Trabajo investigativo. ISPJAM, Facultad Ingeniería Química, 1993.
- 64. GARCELL, L. Composición mineralógica de las suspensiones de limonita de Moa, en períodos de sedimentación normal y critica. Informe investigativo. ISPJAM, Facultad de Ingeniería química, 1993.
- 65. GARCELL, L. Determinación de parámetros reológicos en pulpas minerales que se comportan como plásticos reales. *Revista Tecnología Química*, 1984, (2): 14-19.
- 66. GARCELL, L. Flujo por tuberías de suspensiones minerales no newtonianas. Apuntes para una monografia, 2001, (2): 1 – 40.
- GARCELL, L. Interfacial and rheological characteristics of maghemite aqueous suspensions. *Colloid Interface Science*, 1998, 205 (470): 68-72.
- 68. GARCELL, L. Relación entre las características de sedimentación y granulométricos de las pulpas crudas de Moa y la presencia de determinadas fases mineralógicas. *Revista Tecnología Química*, 1995, 15(1): 19-23.
- GARCELL, L.; A. DÍAZ; G. SURIS. Transferencia de cantidad de movimiento, calor y masa. La Habana: Editorial Pueblo y Educación, 1988.
- 70. GARCELL, P.L; A. CERPA. Caracterización reológica de la pulpa de limonita de Moa. *Revista Tecnología química*, 1992, (1): 63 68.
- 71. GARCÍA, A. Mediciones directas de esfuerzos cortantes iniciales y de propiedades superficiales en suspensiones minerales. Trabajo de diploma, ISPJAM, Facultad de Ingeniería Química, 1998.
- 72. GARCÍA, A.R. Effect of the geometry and flow characteristics on viscoelastic annular swell. *Journal of non Newtonian fluid Mechanics*, 1995, (6B): 17-21.
- 73. GARCÍA, J.D. Estudio preliminar de la obtención de un concentrado de cromita a partir de las colas de Nicaro. Trabajo de

Diploma. Instituto Superior Minero Metalúrgico, Facultad Metalurgia Electromecánica, 1988.

- 74. GIUSTI, L. The morphology, mineralogy and behavior of finegrained gold from placer deposits of Alberta: sampling and implications for minerals exploration. Edmonton, Canadá: University of Alberta, 1985
- 75. GLASTONE, S. Termodinámica para químicos. Madrid: Ediciones Aguilar, 1977. 637 p.
- 76.GONZÁLEZ, B.M. et.al. Folleto de evaluación de proyectos. Temas escogidos. Santiago de Cuba: Universidad de Oriente, 1997.
- 77. GONZÁLEZ, E.S. Planificación de los experimentos en los problemas de ingeniería. Curso de Maestría. UCLV, Santa Clara, 1996.
- 78. GOVSHTOFT, V. Influencia de las fracciones micrométricas sobre los parámetros del transporte hidráulico de carbón. *Transporte hidráulico de carbón*, 1966, (12): 82-88.
- 79. GUARDIA, M. Influencia del tipo de agua sobre la reología de la pulpa de mineral limonítico de Moa. Trabajo de diploma. ISPJAM, Facultad de Ingeniería química, 1994.
- SYR, A; H.W. BEWERDORFF. Orag reduction of turbulent flows by additives. Washington: Kluwer Academic Publishers, 1995.
  234 p.
- 81. HERNÁNDEZ, G. Proceso industrial metalúrgico del níquel. La Habana: Editorial Pueblo y Educación, 1988.
- 82. HERNÁNDEZ, J.L et. al. Optimización energética de un sistema de impulsión de agua industrial en una empresa minera. *Revista Innovación*, 2001, (1): 89-94.
- 83. HERRERA, P. et. al. Caracterización de productos parciales y finales del proceso de beneficio premetalúrgico de las colas de Nicaro a nivel de laboratorio ampliado . Centro de estudio aplicado al desarrollo nuclear Departamento de Materiales, Abril 1994.

- 84. HUNT, C.P. et.al. Effect of citrate-bicarbonate-dithionite treatment on fine-grained magnetite and maghemite. *Earth and Planetary Science Letters*, 1995, 130(1-4): 87-94.
- 85. HURTADO FREIRE, G. Estudio de la influencia en el medio ambiente del sistema de generación de la Empresa del níquel Comandante Ernesto Che Guevara de Moa y el sistema de transmisión eléctrico adyacente. Tesis de Maestría. Instituto Superior Minero Metalúrgico, Facultad Metalurgia Electromecánica, 1999.
- 86. IAKOVLEV, S.V; Y.M. DALKOV. Transporte de calizas y sedimentos de aguas residuales. Moscú: Gosstroishdat, 1961.
  232 p.
- 87. IBENSKII, G.B. Transporte de las mezclas de materiales para la construcción por tuberías. Moscú: Gosstroishdat, 1957.
- ITURRALDE, M. Nuevo modelo interpretativo de la evolución geológica de Cuba. *Revista Ciencias de la Tierra y el Espacio*, 1981, (3):22-27.
- 89. IZQUIERDO, P.R. Estudio de la instalación de hidrotransporte a presión de la pulpa laterítica de la Emp. Cmdte Pedro Soto Alba. *Revista Minería y Geología*, 1989, (3): 16-22.
- 90. IZQUIERDO, P.R. Investigación de los parámetros y elaboración de los regímenes racionales del transporte hidráulico de lateritas utilizadas en las condiciones de la Fca Cmdte Pedro Soto Alba. Tesis de Doctorado. Leningrado, 1989. 145 p.
- 91. IZQUIERDO, P. R; A.K. NICOLAEV. Investigación de los parámetros y regímenes racionales de hidrotransporte de las pulpas lateríticas aplicables a las condiciones de explotación de la Empresa "Cmdte. Pedro Soto Alba". *Revista Minería y Geología*, 1995, (1): 57- 59.
- 92. JAMES.R.O.; G.A. PARKS. Characterization of Acueous Colloids by Their Electrical Double – Layer and Intrinsic Surface Chemical Properties. *Surface and Colloids Science*, 1982, 12: 58-68.

- 93. JIMÉNEZ, M.J. et.al. Utilización de eyectores para el cebado de bombas centrifugas. *Revista tecnología de la construcción de maquinarias*, 1995, (3): 86-92.
- 94. KALININ, V.A. Transportación de desechos por tuberías. M ecanización y Electrificación de la Economía Rural Socialista. 1965.
- 95.KARASIK, B.M. et.al. Investigación del hidrotransporte de los productos de cola de beneficio de las plantas minero metalúrgicas. Kiev, 1976.
- 96.KARASSIK, I. Bombas centrífugas: selección, operación y mantenimiento. La Habana: Instituto Cubano del Libro, 1968. 560 p.
- 97.KARASSIK, J.J. Bombas centrifugas y factores hidráulicos del sistema 2001
- 98. KIN, S.J.; T.M, KNOWN. Development of mineral simulation methods and analysis of extraction processes of particle filled plastic. Materials suject to slip at the wall. *Powder technology*, 1995, (85): 86-92.
- 99. KITOH, O.; C.M. SIMON. An analytical solution to the viscous flows in curved duet with inlet swirl. *ISME International Journal*, 1995, 38(4): 53-58.
- 100. KSHONDZER, E.G; A.E. SMOLDRIEV. Funcionamiento de los parámetros de la hidromezcla para conductos industriales de carbón. Fis. Tec. Problemas de elaboración de los yacimientos minerales. Moscú, 1969.
- LANTIKOV, Z; V.D. FILATOV. Ecuación aproximada de Buckingham del flujo plástico viscoso de sistemas dispersos. *Kolloidnii Revista*, 1963, 25(1): 22-29.
- 102. ASTOV, B.G. Investigación sobre la Optimización de los parámetros del transporte hidráulico de lodos de alta concentración. Tesis de Doctorado. Leningrado, 1976.
- 103. LEGRÁ, L.A. Software Tierra ( c ). Moa: ISMM, 2000.

- LEONG, Y.K; D.V. BOGER: Surfase Chemistry Effects on Concentrated Suspensión Rheology. *Journal. Colloid Interface Sei*, 1990, 136(1): 249 – 258.
- 105. Ley No. 81 del Medio Ambiente. La Habana: Ministerio de Ciencia Tecnología y Medio Ambiente, 1989.
- 106. LÓPEZ, C.H. Optimización del Esquema de beneficio de las colas de Nicaro con fines siderúrgicos. Trabajo de Diploma. ISMM, Facultad Metalurgia Electromecánica, 1988.
- MADEN, B.M. Sistema de distribución de colas en las presas de la UPI Las Camariocas y protección del medio ambiente. Trabajo de Diploma. ISMM, 1995.
- 108. MAKKAVEEV, V.M. Teoría del movimiento de flujos turbulentos contenidos por arenas finas. *Isvestia AN SSSR*, 1952, (2): 5-11.
- MARSDEN, D.D. Efecto del pH en dependencia de la temperatura, densidad y viscosidad cinemática. Revista Sudáfrica, Instituto de Minas y Metalurgia. No.6. 1962.
- 110. MARTÍNEZ, M. S; N. MILIÁN. Estudio de las propiedades físico mecánica de la pulpa laterítica influyente en el proceso de hidrotransporte. Trabajo de diploma. ISMM, Facultad de Metalurgia Electromecánica, 1995.
- 111. MATOS TAMAYO, R.; R. MING CORTÓN. Aspectos fundamentales de la química - física. La Habana: Pueblo y Educación, 1988. 338 p.
- 112. MIJAILOV, N.K. Estructura del flujo de hidromezclas trifásicas por tuberías. Moscú: Construcción de maquinarias, 1994
- 113. MIJAILOVA, N.A. Transporte de partículas sólidas en flujo turbulento. Leningrado: Guidrometeoizdat, 1966.
- 114. MIRZADSHAHZADE, A.X. Hidráulica de las mezclas de cemento y arcilla. Moscú: Editorial Mir, 1966.
- 115. MITROFANOV, S.I. Investigación de la capacidad de enriquecimiento de los minerales. Moscú: Editorial Mir, 1982.
- 116. MUÑIZ, M. A.; L. SIMÓN. Influencia de las propiedades reológicas y superficiales en la característica de sedimentación de

Bibliografía

la pulpa laterítica. Trabajo de Diploma. Universidad de Oriente, Facultad de Ingeniería Química, 2001.

- 117. MURRAY, S.A.; D. KAVERNER. Graduación de las colas de la Empresa Comandante Ernesto Che Guevara. La Habana CESIGMA, 1996.
- 118. MUSTER, T.M. Rheological vestigations of sulphide mineral Sherries. *Mineral Egineering*, 1995, 18(12): 154-155.
- 119. NC: 93 06 101: 1987 (Cu) paisaje, términos y definiciones.
- 120. NIEXOMETDINOV, A.B. Seudoplasticidad en hidromezclas de fracciones típicas. Modernización técnica y tecnología en el almacenamiento de desechos en condiciones de utilización compleja de la materia prima. Moscú: Niedra, 1984. 64 p.
- 121. NOVOA,R.ORTEGA. Influencia del Ph y otros factores de la sedimentación de pulpa de mineral . Revista Cenic,Febrero 1976.
- 122. NÚÑEZ, N. Metodología para el estudio de la determinación de minerales lateríticos. Tesis de maestría. Universidad de Oriente, Facultad de Ingeniería Química, 1998.
- 123. NUROK, G.A. Procesos y tecnología de la hidromecanización en trabajos mineros. Moscú: Niedra, 1979.
- 124. NUROK, G.A. Procesos y tecnología para la hidromecanización de la minería a cielo abierto. Moscú, Editorial Mir, 1985.
- 125. OSTLE, B. Estadística aplicada. La Habana: Editorial Félix varela, 1981.
- 126. PACHECO, P.B. "Bombas, ventiladores y compresores. Santiago de Cuba: Ediciones ISPJAM, 1987.
- 127. PAKROVSKAYA, V.N. Corte de la distribución de la concentración por la sección del flujo en tubos cilíndricos. En:Transporte hidráulico de carbón. Moscú: ZNITEIYGOL, 1973.
- 128. PAKROVSKAYA, V.I. El transporte hidráulico en la industria minera. Moscú: Niedra, 1985. 192 p.
- 129. PAKROVSKAYA, V.I. Intensificación de los procesos del transporte hidráulico de hidromezclas de alta concentración. Instituto de Minas de Leningrado, 1976.

- 130. PAKROSKAYA, B.M. Manual de prácticas de laboratorio de máquinas y complejos de transporte minero. Leningrado: Instituto de Minas de Leningrado, 1982.
- 131. PAKROVSKAYA, V.I. Intensificación del transporte hidráulico. Leningrado: Instituto de Minas de Leningrado, 1987
- 132. PAKROVSKAYA, V.I. Vías para el incremento de la efectividad del transporte hidráulico. Moscú: Niedra, 1972.
- 133. PAVLOV, K.F.; P.G. ROMANKOV; A.A. NOSKOV. Problemas y ejemplos para el curso de operaciones básicas y aparatos en tecnología química. La Habana: Editorial Mir, 1981.
- 134. PAVÓN, O.; R. RIZO. Construcción y evaluación de un viscosímetro de tubo capilar para el laboratorio de operaciones unitarias. Trabajo de diploma. Las Tunas, 1995.
- PARRA,CH.G. Sedimentación de la pulpa cruda de silicato de sodio .Trabajo de Diploma.ISMM. Moa.Facultad de Metalurgia.1984.
- PEREZ BARRETO, R. Caracterizao de ensayos de maquinas de fluxo no laboratorio de vazao do IPT. Sao Paulo: Convenio CAPES-MES, 2000
- 137. PÉREZ BARRETO, R. Investigación de los parámetros del transporte hidráulico de las menas y concentrados en flujos de alta concentración. Tesis de Doctorado. Krivoi Rog, 1970.
- 138. PÉREZ BARRETO, R. Investigaciones experimentales del parámetro del transporte de sal común suspensa en flujos de salmuera saturadas. *Revista Minería y Geología*, 1983, (3): 19-23.
- 139. PÉREZ BARRETO, R. Soluciones aproximadas del problema del movimiento turbulento de fluidos heterogéneos viscosos e incomprensibles. *Revista Minería y Geología*, 1984, (1):6-8.
- 140. PÉREZ BARRETO, R.; S. MALIUK. Sobre la elección de criterios de semejanza hidrodinámica aplicadas al transporte hidráulico. *Revista Minería y Geología*, 1984, (3): 23-25.
- PÉREZ, F. Equipos de Bombeo. La Habana: Editorial Pueblo y Educación, 1983.

- 142. PÉREZ RODRIGUEZ, et.al. Occurrence of talc in soils with high iron content from the south-west of Spain. *Australian Journal of Soil Research*, 1996, 34(5): 635-651.
- 143. PERRY, J.H. Chemical engineers handbook. 6 ed. New York: McGraw Hill Book, 1984.
- 144. PICHINISNOI, I.O; V.V. TRAINIS. Transporte hidráulico de suspensiones de carbón plástico viscosas. Moscú: Niedra, 1967.
- PONCE, N.A. Mineralogía Y Composición Sustancial del Yacimiento artificial "Colas De Nicaro". La Minería en Cuba, 1979, 5(3): 30-36.
- 146. PONCE, N.A; I. CARRILLO. Composición Sustancial del Yacimiento Artificial "Colas de Moa". Revista Tecnológica Serie Geología, 1986, 16(2): 66-75.
- 147. PORTAL, L. Nuevas inversiones en los últimos 5 años en la industria del Níquel. Granma Internacional 27 de Mayo del 2001.
- 148. PORTUONDO, P.F. Economía de las empresas industriales. La Habana: Editorial Pueblo y Educación, 1985. 2da. Parte.
- 149. Programa de fabricación. Catálogo Bombas Itur, España, 1996.
- Programa del Partido Comunista de Cuba. La Habana: Editora Política, 1987.
- 151. RAHIER, H. Rheological transformation during. Low. Temperature and high temperature propiaties of a model compound. *Journal of materials Science*, 1996, 31: 19-23.
- 152. RAMOS, C.S. Diseño de Bombas Centrífugas radiales. *Revista Construcción de maquinaria*, 1994, (3): 3-7.
- 153. RAMOS, P.N. Bombas, Ventiladores y Compresores. La Habana: Ediciones ISJAE, 1989.
- RAMOS, S.J. Intensificación del intercambio energético en eyectores liquido – liquido. Tesis de doctorado. Universidad de Camagüey, 1998. 177p.
- 155. RAYO, J. Transporte sobre terrenos de alta dificultad topográfica. *Revista Latino Minería* (minería, siderurgia, carbón y petróleo en América Latina), 2000, (45): 4-5.
- 156. REINIER, M. Reología. Moscú: Nauka, 1965.
- 157. Resolución Económica V Congreso del partido Comunista de Cuba. La Habana: Editora Política, 1997.
- 158. REMEDIOS,P.D. Caracterización reològica de productos derivados del azúcar y su aplicación al cálculo de Bombas de tornillo. Tesis Doctoral. Universidad de Oriente,Facultad de Ingenieria Quìmica, Santiago de Cuba,2000.
- 159. RIVAS RAMOS, J.M; R.V. CALA. Adsorption of maghemite and ferrihydrite containing heavy metals. Sociedad Española de la Ciencia del Suelo. *Edafologia*, 1995, (1): 75-82.
- ROBERTSON, I.D. Ferruginous lag geochemistry on the Yilgarn Craton of Western Australia; practical aspects and limitations.
   CSIRO Division of Exploration and Mining, Australia. *Journal of Geochemical Exploration*, 1996, 57(1-3): 139-151.
- 161. RODRÍGUEZ O.J.; A. SÁNCHEZ. Estudios de la sedimentación de las pulpas de lateritas y de los factores que la afectan. Trabajo de diploma. Universidad de Oriente, Facultad de ingeniería Química, 2000.
- 162. RODRÍGUEZ, R.L. Importancia del transporte preferencial en la zona no saturada y la formación de fisuras en residuos mineros. Huelva: Universidad de Huelva. Departamento de Ingeniería del terreno y Cartografía, 1998.
- 163. RODRÍGUEZ, S. Mediciones directas de esfuerzos constantes iniciales y de propiedades superficiales en suspensiones minerales. Trabajo de Diploma. Universidad de Oriente, Facultad de Ingeniería Química, 1998.
- RODRÍGUEZ, I.R.; A. RODRÍGUEZ; L.M. FLEITES. Curvas de flujo de suspensiones fibrosas diluidos de pulpas químicas de bagazo blanqueado. *Revista Tecnología Química*, 1995, 6(3): 34-38.
- ROSABAL, J; L.R. GARCELL. Hidrodinámica y separaciones mecánicas. La Habana: Editorial Pueblo y Educación, 1988. Tomo I.

Bibliografía

- 166. ROSABAL, J; M. VALLE. Hidrodinámica y separaciones mecánicas. La Habana: Editorial ENPES, 1989.
- 167. SABORIT, A.C; G.E. CRUZ. Estudio de la instalación de bombeo de cola de la planta de lixiviación y lavado a la planta de recuperación de amoniaco. Trabajo de diploma. Instituto Superior Minero Metalúrgico, Facultad Metalurgia y Electromecánica, 1999.
- 168. SAFONOV, U.K. Modelo reológico de las suspensiones concentradas. En: Automatización, Mecanización y equipamiento de los procesos de la producción de papel. Moscú: VNIP, 1977.
- SAFONOV, U.K. Valoración de la influencia del efecto de pared sobre la viscosidad de las suspensiones de sosa. Moscú: VNIP, 1970.
- 170. SHI, F.N. A model for slurry rheology. *International journal of mineral processing*, 1996, (47): 103–23.
- 171. SÁNCHEZ, D; W. CRUZ. Efecto del tipo de agua utilizada en la preparación del mineral limonítico sobre la viscosidad de sus pulpas. Trabajo de Diploma. Universidad de Oriente, Facultad de Ingeniería Química, 2000.
- SAPOG, N. Preparación y evaluación de proyectos. New York: McGraw Hill, 1995.
- 173. SINGER, M.J; et.al. Moessbauer spectroscopic evidence for citrate-bicarbonate-dithionite extraction of maghemite from soils. *Clays and Clay Minerals*, 1995, 43(1): 1-7.
- 174. SEPÚLVEDA, J. Teoría y problemas de ingeniería económica. México, 1985.
- 175. SHANG, S.N. Work of adhesion influence on the rheological propieties of silica fillet polymen composites. *Journal of Materials Science*, 1995, (30): 67-69.
- 176. SHAW. D.J. Introducción a la Química de Superficie y Coloide.2. ed. Madrid: Editorial Alambra, 1997.
- 177. SHICHENKO, R.I. Hidráulica de las hidromezclas arcillosas.Bacú: Aznefteizdad, 1951.

Bibliografía

- 178. SKELLAND, A.H.P. Non-Newtonian Flow and Heat. Transfer. La Habana: Instituto Cubano del Libro, 1970.
- 179. SLOBSTOV, L.E. Método sobre el procesamiento de serpentinitas reducidas. *Revista Svetnie Metals*, 1979, (6): 25-29.
- SMOLDRIEV, A.E. Disminución de incrustaciones en la tubería mediante el hidrotransporte. *Revista metales preciosos*, 1986, (2): 107-109.
- SMOLDRIEV, A.E. Sobre los regímenes y parámetros del flujo de pulpa de roca minera triturada. *Izv. Vuzof. Geología y Búsqueda*, 1980, (1): 122-127.
- SMOLDRIEV, A.E. Transporte Neumo Hidráulico. Moscú: Metalurgia, 1997. 367 p.
- SMOLDRIEV, A.E. Transporte por tuberías. Moscú: Niedra, 1980. 293 p.
- SMOLDRIEV, A.E; Y.K. SAFONOV. Transporte por tuberías de hidromezclas concentradas. Moscú: Construcción de maquinarias, 1989. 208 p.
- 185. SMOLDRIEV, A.E; V. GOFSHTOVI. Influencia de las fracciones micrométricas sobre los parámetros de hidrotransportación de carbón. Veb: Explotación Hidráulica. Moscú: CHNIITEK, 1966.
- 186. SMOLSKII, B.M; E.P. SULMAN; B.H. GORISLAVIISH. Reodinámica e intercambio de calor en los materiales viscosoplásticos no lineales. Minsk: Ciencia y Técnica, 1970. 448 p.
- STREETER, V.L. Mecánica de los fluidos. La Habana: Ciencia y Técnica, 1978. 737 p.
- 188. SOBOL, S.I.: Composición de las lateritas de Moa y su influencia sobre los procesos de lixiviación de minerales por ácido sulfúrico en autoclaves. *Revista Tecnológica*, 1968, (5 y 6): 23-28.
- 189. SUÁREZ FELIÚ, M. Determinación de los parámetros del hidrotransporte de las pulpas del mineral serpentinito. Tesis de doctorado. ISMMM, Facultad Metalurgia Electromecánica, 1998. 117p.

- 190. SUN, W; S.K. BANERJEE; C.P. HUNT. The role of maghemite in the enhancement of magnetic signal in the Chinese loess-Paleosol sequence; an extensive rock magnetic study combined with citrate-
- 191. bicarbonate-dithionite treatment. *Earth and Planetary Science Letters*, 1995, 133(3-4): 493-505.
- 192. TARASOR, V.K. Sobre la velocidad crítica mediante transporte por gravedad de los materiales sólidos. Moscú, 1980.
- 193. TAYLOR, R.M. Maghemite in soils and its origin I, properties and observations on soil maghemites. Clay and clay minerals, 1974, 10(289): 43-48.
- 194. TAYLOR, R.M. Maghemite in soils and its origin II, maghemite synthesis at ambiente temperature and PH 7. Clay and clays minerals, 1974, 10(229): 43-47.
- 195. TEJEDA, H.D. Efecto del deslizamiento efectivo en viscosímetros rotacionales. Trabajo de diploma, ISJAM, 1985.
- 196. TORO, C.A. Recuperación de cobalto mediante la lixiviación con ácido sulfúrico de las colas de la tecnología carbonato amoniacal-46 p. Trabajo de diploma. ISMMM, Facultad de Metalurgia, 2001.
- 197. TORRES CLAVEL, E. Efecto de la interacción entre las partículas, sobre el comportamiento reológico de las pulpas de lateritas de Moa. Trabajo de diploma. ISPJAM. Santiago de Cuba, 1989.
- TORRES, T.E. Modificación del sistema de bombeo de colas de la planta de lixiviación. Trabajo de diploma. ISMMM, Facultad Metalurgia Electromecánica, 1993.
- 199. TOOSE, E.M. A boundery integral method for two dimentional) (non) – Newtonian drops is slow visions flow. *Journal of Non– Newtonian Fluid Mechanics*, 1995, (2): 129 – 154.
- 200. TRAINIS, V.V. Investigación y elaboración de los métodos de cálculo del transporte hidráulico de carbón por tuberías en

regímenes viscosoplástico y turbulento. Kiev: Autoreferat para D.C.T, 1969.

- 201. TRAINIS, V.V. Parámetros y regímenes del transporte hidráulico del carbón por tuberías. Moscú: Nauka, 1970. 192 p.
- TRIMISJII, K.K. et.al. Sobre el efecto de pared durante el flujo de los sistemas dispersos plásticos. *Revista Coloidal*, 1973, 35(6): 123-128.
- 203. TURIÑO, I.H; Y.S. JÁUREQUI. Determinación aproximada de las características de funcionamiento de una bomba centrífuga. *Revista Centro Azúcar*, 1994, (Enero- Abril): 89 – 95.
- 204. TURIÑO. I.M, Y. SJÁUREQUI; Y. VALDÉS. Evaluación de sistemas de bombeo por métodos computacionales. *Revista Construcción de Maquinaria*, 1994, (3): 61 – 66.
- 205. TURRO, B.D.; Y.C. ZARZABAL. Metodología de investigación del transporte hidráulico aplicable a las condiciones de la industria del níquel. Trabajo de diploma. ISMM, Facultad de Metalurgia Electromecánica, 1997.
- 206. VALDES,G.F. Principios químicos coloidales de la sedimentación de las pulpas altamente dispersas de mineral laterítico de la fabrica de Moa. Tesis Doctoral. Moscú, 1983.
- 207. VEGA, R.J. Hidrodinámica y separaciones mecánicas. La Habana: Ediciones ENPES, 1998. tomo II.
- 208. VENNARD, J.K; R.L. STREET. Elementos de mecánica de los fluidos. La Habana: Instituto Cubano del Libro, 1986. 424 p.
- 209. VILALTA, G; J.P. ORTIZ. Modificacoes na estructura de escoamentos turbulentos en canal devido a adicáo de polimeros. Mecanismo de reducáo de atrito. Boletín técnico BT / PMC Escola Politécnica de VSP.
- VILALTA, G; J.P. ORTIZ. Procesos de transferencia de energía en flujos turbulentos de soluciones polimericas.
- VENNARD, J.K. Elementos de Mecánica de los fluidos. La Habana: Edición Revolucionaria, 1986.

- VOEVODIN, A; G. GOBANTES. Diseño de impelentes para análisis de desgaste en Bombas. *Revista Construcción de Maquinarias*, 1984, (Mayo–Agosto): 123-126.
- 213. VOLLIS, G. Flujo unidimensional de dos fases. Moscú: Editorial Mir, 1972
- 214. VOLOKITIN, V.G. Elaboración del método de conservación de sales de alta concentración en forma de suspensión en ZBP. Leningrado: Autoreferat para C.D.C.T, 1984.
- WELCH, D.E. Manual sobre estructuras de retención para residuos mineros y temas conexos. Notario, Canadá: Golder Associates, 1998.
- 216. WILLIANSON, B.P. et.al. The Viscoelastie properties of multigrade oils and their effect on journal bearing characteristics. *Journal of non newtonian fluid Mechanics*, 1997, 23(3): 101-106.
- 217. YUAN, X. F. Flow behavior two dimensional randomfoams. *Journal of Non Newtonian Fluid Mechanics*, 1995, (60): 335 348.
- 218. YUFIN, A.P. Hidromecanización. Moscú: Strdizdat, 1965.
- ZAGUSTIN, K. Consideraciones fenomenológicas en relación con la influencia de aditivos en flujo turbulento. *Revista de la Facultad de Ingeniería. Universidad Central de Venezuela*, 1983, (6): 26-29.
- 220. ZELIKMAN, A.N. Teoría de los procesos hidrometalúrgicos. Moscú: Editorial Metalurgia, 1982.

| Muestra          | No. | Fracción (mm) | Mallas | Peso (g) | % P   |
|------------------|-----|---------------|--------|----------|-------|
|                  | 1   | +0.150        | + 100  | 27.26    | 25.91 |
| M-3              | 2   | +0.074        | + 200  | 17.49    |       |
| + 0.15           | 3   | +0.044        | + 325  | 8.00     | 7.600 |
|                  | 4   | - 0.044       | - 325  | 51.43    | 48.90 |
|                  | 5   | +0.150        | + 100  | 2.99     | 2.41  |
| M-4              | 6   | +0.074        | + 200  | 3.99     | 3.21  |
| - 0.03           | 7   | +0.044        | + 325  | 8.99     | 7.34  |
|                  | 8   | - 0.044       | - 325  | 107.24   | 86.4  |
|                  | 9   | + 0.150       | + 100  | 5.99     | 5.34  |
| M-5              | 10  | +0.074        | + 200  | 11.12    | 9.91  |
| - 0.15<br>+ 0.03 | 11  | +0.044        | + 325  | 17.99    | 16.03 |
|                  | 12  | - 0.044       | - 325  | 75.30    | 67.11 |
|                  | 13  | + 0.150       | + 100  | 8.57     | 7.1   |
| М б              | 14  | +0.074        | + 200  | 16.50    | 13.74 |
| 141-0            | 15  | +0.044        | + 325  | 11.99    | 9.98  |
|                  | 16  | - 0.044       | - 325  | 81.90    | 68.2  |
|                  | 17  | + 0.150       | + 100  | 6.99     | 5.4   |
| M 7              | 18  | +0.074        | + 200  | 12.99    | 9.97  |
| 141-7            | 19  | +0.044        | + 325  | 16.00    | 12.3  |
|                  | 20  | - 0.044       | - 325  | 91.93    | 70.6  |

Tabla 1.1. Composición granulométrica de las colas de Nicaro.

Datos sobre la separación en fracciones de las muestras resultantes del tratamiento tecnológico. (\*Datos suministrados por el CIS )

| М           | % Co  | % Fe  | % SiO <sub>2</sub> | %    | %                              | %                              | %    | % Ni |
|-------------|-------|-------|--------------------|------|--------------------------------|--------------------------------|------|------|
|             |       |       |                    | MgO  | Al <sub>2</sub> O <sub>3</sub> | Cr <sub>2</sub> O <sub>3</sub> | MnO  |      |
| 3 (+100)    | 0.061 | 49.4  | 10.4               | 10.4 | 6.94                           | 4.35                           | 0.76 | 1.7  |
| 3 (+200)    | 0.073 | 53.0  | 8.5                | 6.6  | 6.73                           | 2.30                           | 0.88 | 1.6  |
| 3 (-325)    | 0.087 | 52.6  | 9.2                | 4.9  | 6.53                           | 2.56                           | 0.86 | 1.7  |
| 4 (+200)    | -     | 41.68 | -                  | -    | 1.41                           | 9.78                           | -    | -    |
| 4 (+325)    | 0.090 | 34.4  | 21.8               | 17.0 | 5.30                           | 3.58                           | 0.66 | 1.8  |
| 4 (-325)    | 0.091 | 42.8  | 13.4               | 11.4 | 5.10                           | 2.56                           | 0.78 | 1.8  |
| 5 (+150)    | -     | 38.80 | -                  | -    | 0.70                           | 8.47                           | -    | -    |
| 5 (+200)    | 0.082 | 39.4  | 17.0               | 16.0 | 5.51                           | 3.84                           | 0.76 | 1.6  |
| 5 (+325)    | 0.082 | 42.4  | 15.7               | 11.6 | 6.32                           | 4.10                           | 0.76 | 1.6  |
| 5 (-325)    | 0.089 | 49.0  | 16.9               | 7.5  | 5.10                           | 2.56                           | 0.86 | 1.7  |
| 6 ( + 100 ) | 0.073 | 53.0  | 8.5                | 6.6  | 6.73                           | 2.30                           | 0.88 | 1.4  |
| 6 ( + 200 ) | 0.079 | 50.6  | 10.7               | 9.0  | 6.32                           | 2.82                           | 0.90 | 1.5  |
| 6 ( + 325 ) | 0.080 | 53.0  | 9.8                | 5.8  | 6.94                           | 3.58                           | 0.66 | 1.6  |
| 6 (-325)    | 0.086 | 53.0  | 10.8               | 5.6  | 6.12                           | 2.30                           | 0.90 | 1.7  |
| 7 ( + 150 ) | -     | 12.6  | -                  | -    | 0.20                           | 4.56                           | -    | -    |
| 7 (+200)    | 0.082 | 18.4  | 27.8               | 26.9 | 4.28                           | 4.61                           | 0.42 | 1.6  |
| 7 ( + 325 ) | 0.079 | 26.4  | 23.8               | 21.6 | 5.51                           | 4.10                           | 0.82 | 1.5  |
| 7 (-325)    | 0.089 | 41.6  | 17.5               | 12.6 | 5.71                           | 3.07                           | 0.80 | 1.7  |

### 1.2. Composición química de las colas de Nicaro.

Análisis químico de las muestras estudiadas. (\* Datos suministrados por el CIS ).



Figura 1. Elementos de medición de los reómetros rotacionales: (a) , (b) , (c) – de cilindros coaxiales ; (d) – de cono y plato.



Figura 3. - Perfiles de distribución de velocidades de una suspensión de caolín con D = 200 mm y diferentes regímenes de flujo: 1 – homogéneo; 2 – estructural; 3 – transitorio; 4 – turbulento.



Figura 4. Dependencia de i = f(v), que caracteriza el flujo de la hidromezcla de materiales granulares por tuberías D =0.3 m: 1 - C = 0; 2 - C = 2,3 %; 3 - C = 3,1 %; 4 - C = 3,2 %; 5 - C = 3,5%; 6 - C = 4,5% ; 7 - C = 5,2%.



Figura 5. Factor de fricción en la función del número de Re y He para plásticos Bingham (materiales homogéneos, suspensiones sólido – líquido).



Figura 6 . Afectaciones ambientales que provocan cada una de las zonas que componen la Empresa Comandante Ernesto Che Guevara.

| dP (kgf/cm2) | dP (Pa)   | Q (m3/h) | i (Pa/m) | v (m/s) | Re         |
|--------------|-----------|----------|----------|---------|------------|
| 0,00746779   | 732,5903  | 18,6516  | 49,87    | 0,66    | 76375,814  |
| 0,02969446   | 2913,027  | 38,151   | 198,3    | 1,35    | 156223,256 |
| 0,06542366   | 6418,061  | 57,3678  | 436,9    | 2,03    | 234913,488 |
| 0,10470181   | 10271,248 | 74,0412  | 699,2    | 2,62    | 303188,837 |
| 0,15703775   | 15405,403 | 89,5842  | 1048,7   | 3,17    | 366835,349 |
| 0,19697478   | 19323,226 | 100,6056 | 1315,4   | 3,56    | 411966,512 |
| 0,25606422   | 25119,9   | 114,7356 | 1710     | 4,06    | 469826,977 |
| 0,32069423   | 31460,104 | 129,996  | 2141,6   | 4,6     | 532316,279 |
| 0,35019403   | 34354,034 | 135,648  | 2338,6   | 4,8     | 555460,465 |
| 0,3611404    | 35427,873 | 137,6262 | 2411,7   | 4,87    | 563560,93  |
| 0,37276062   | 36567,817 | 139,887  | 2489,3   | 4,95    | 572818,605 |

Tabla 3.1. Mediciones del agua en la tubería de 100 mm

| Lamda      | Fr         | ft       | Re/Fr      | ical (Pa/m) | iadm2      |
|------------|------------|----------|------------|-------------|------------|
| 0,02300759 | 0,4440367  | 0,005884 | 172003,383 | 51,0153532  | 878,611698 |
| 0,02186627 | 1,85779817 | 0,005558 | 84090,5426 | 201,616672  | 1708,01034 |
| 0,02130638 | 4,20071356 | 0,005436 | 55922,282  | 445,873732  | 2502,57761 |
| 0,02047003 | 6,99734964 | 0,00522  | 43329,0964 | 713,203472  | 3103,1422  |
| 0,0209726  | 10,243527  | 0,005334 | 35811,4298 | 1066,87097  | 3846,74639 |
| 0,02085823 | 12,9190622 | 0,005321 | 31888,2676 | 1342,25063  | 4296,4463  |
| 0,02084797 | 16,8028542 | 0,005301 | 27961,141  | 1739,20283  | 4897,46821 |
| 0,0203396  | 21,5698267 | 0,005184 | 24678,7462 | 2183,33823  | 5413,54904 |
| 0,02039826 | 23,4862385 | 0,005181 | 23650,4651 | 2375,94526  | 5665,21318 |
| 0,02043549 | 24,1762487 | 0,005176 | 23310,52   | 2443,38866  | 5758,321   |
| 0,02041674 | 24,9770642 | 0,00518  | 22933,7844 | 2526,2744   | 5847,54522 |

| dP (kgf/cm2) | dP (Pa)    | Q (m3/h) | i (Pa/m) | v (m/s) | Re      | Lamda      | ft       |
|--------------|------------|----------|----------|---------|---------|------------|----------|
| 0,07999985   | 7847,9856  | 18,0864  | 534,24   | 0,64    | 3502    | 0,20066106 | 0,007388 |
| 0,11088629   | 10877,945  | 29,3904  | 740,5    | 1,04    | 6773,3  | 0,10532829 | 0,006129 |
| 0,11999978   | 11771,9784 | 31,9338  | 801,36   | 1,13    | 7647,2  | 0,09655114 | 0,005923 |
| 0,13999974   | 13733,9748 | 41,8248  | 934,92   | 1,48    | 10924,6 | 0,06566556 | 0,005354 |
| 0,15999971   | 15695,9712 | 46,0638  | 1068,48  | 1,63    | 13495,1 | 0,06186967 | 0,005043 |
| 0,17999967   | 17657,9676 | 55,9548  | 1202,04  | 1,98    | 16065,6 | 0,04717101 | 0,0048   |
| 0,19999963   | 19619,964  | 65,5632  | 1335,6   | 2,32    | 20178,4 | 0,03817571 | 0,00453  |
| 0,22007447   | 21589,3054 | 76,8672  | 1469,66  | 2,72    | 24998,1 | 0,03056087 | 0,004236 |
| 0,24408461   | 23944,7    | 92,9754  | 1630     | 3,29    | 32452,5 | 0,02316767 | 0,004    |
| 0,27029001   | 26515,45   | 108,2358 | 1805     | 3,83    | 39906,9 | 0,01893068 | 0,003711 |
| 0,27999949   | 27467,9496 | 111,9096 | 1869,84  | 3,96    | 41706,3 | 0,01834428 | 0,003664 |
| 0,30399914   | 29822,3159 | 116,1486 | 2030,11  | 4,11    | 43891,3 | 0,01848939 | 0,003612 |
| 0,31999941   | 31391,9424 | 118,9746 | 2136,96  | 4,21    | 45369,3 | 0,01854893 | 0,003579 |
| 0,35999934   | 35315,9352 | 124,344  | 2404,08  | 4,4     | 48196,8 | 0,01910426 | 0,003517 |
| 0,35005027   | 34339,9316 | 128,0178 | 2337,64  | 4,53    | 50124,6 | 0,0175254  | 0,003479 |

Tabla 3.3. Mediciones de la cola a 30% en peso de sólido en la tubería de 100 mm

| Fr         | Re/Fr      | ical (Pa/m) | phi        | iadm1      | iadm2  | Recr | Fexp.      |
|------------|------------|-------------|------------|------------|--------|------|------------|
| 0,41753313 | 8387,3584  | 78,6792448  | 6,79010076 | 0,10033053 | 335,5  | 2415 | 0,03952415 |
| 1,10254842 | 6143,31296 | 172,357286  | 4,29630807 | 0,05266414 | 340,8  | 2415 | 0,02074648 |
| 1,30163099 | 5875,09061 | 196,640046  | 4,07526349 | 0,04827557 | 349,68 | 2415 | 0,01901765 |
| 2,23282365 | 4892,72854 | 304,912442  | 3,06619171 | 0,03283278 | 343,3  | 2415 | 0,01293413 |
| 2,70835882 | 4982,75927 | 348,367414  | 3,06710661 | 0,03093484 | 368,8  | 2415 | 0,01218645 |
| 3,99633028 | 4020,08815 | 489,26592   | 2,45682348 | 0,02358551 | 366,4  | 2415 | 0,00929126 |
| 5,48664628 | 3677,72934 | 633,939072  | 2,10682707 | 0,01908785 | 367,8  | 2415 | 0,00751946 |
| 7,54169215 | 3314,65399 | 814,830182  | 1,80363962 | 0,01528043 | 365,6  | 2415 | 0,00601957 |
| 11,0337411 | 2941,2055  | 1125,7064   | 1,44797969 | 0,01158384 | 358,8  | 2415 | 0,00456333 |
| 14,9530071 | 2668,82104 | 1415,34349  | 1,2753088  | 0,00946534 | 360,6  | 2415 | 0,00372877 |
| 15,9853211 | 2609,03736 | 1493,89194  | 1,25165679 | 0,00917214 | 367,7  | 2415 | 0,00361327 |
| 17,2192661 | 2548,96462 | 1586,3709   | 1,27971965 | 0,00924469 | 387,7  | 2415 | 0,00364185 |
| 18,0673802 | 2511,11669 | 1649,2984   | 1,29567821 | 0,00927446 | 401,9  | 2415 | 0,00365358 |
| 19,7349643 | 2442,20355 | 1770,31712  | 1,35799398 | 0,00955213 | 439,6  | 2415 | 0,00376296 |
| 20,9183486 | 2396,20253 | 1856,19749  | 1,25937031 | 0,0087627  | 419,6  | 2415 | 0,00345197 |

| i<br>(Pa/m)  | V<br>( m/s) | T<br>(° C) | D<br>( mm) | C<br>(%) | R <sub>crL</sub> | R <sub>crTurb.</sub> | $\alpha_{c}$ | Не                  | Fr <sub>critL</sub> | Fr <sub>crit</sub><br>Turb | $arphi_{Lam}$ | $arphi_{Turb.}$ | τ <sub>0</sub><br>(Pa) | $\mu_p$ (Pa/s) |
|--------------|-------------|------------|------------|----------|------------------|----------------------|--------------|---------------------|---------------------|----------------------------|---------------|-----------------|------------------------|----------------|
| 563÷962,5    | 0,6÷1,02    | 28         | 100        | 40       | 4504,6           | 7700                 | 0,28405      | $4,4x10^{4}$        |                     |                            |               |                 | 0,755                  | 0,016          |
| 762÷1141,5   | 0,78÷1,16   | 28         | 100        | 45       | 5145,7           | 7700                 | 0,3203       | $4,4x10^{4}$        |                     |                            | !             | <u> </u>        | 1,239                  | 0,0215         |
| 1520÷2029,3  | 1,12÷1,49   | 28         | 100        | 50       | 5771,3           | 7700                 | 0,3527       | $4,4x10^{4}$        | 1,32                | 1,7                        | 4,685         | 3,8             | 1,815                  | 0,0268         |
|              |             |            |            |          |                  |                      |              |                     |                     |                            |               |                 |                        |                |
| 442,2÷823,7  | 0,48÷0,89   | 60         | 100        | 40       | 3489,6           | 6500                 | 0,19686      | $4,4x10^{4}$        |                     |                            |               | <u> </u>        | 0,67                   | 0,01465        |
| 5844,2÷940,2 | 0,59÷0,95   | 60         | 100        | 45       | 4040,5           | 6500                 | 0,24732      | $4,4x10^4$          |                     |                            |               | <u> </u>        | 1,142                  | 0,0192         |
| 1476÷1712,9  | 0,83÷1,15   | 60         | 100        | 50       | 4722,13          | 6500                 | 0,7786       | $4,4x10^4$          | 0,85                | 1,4                        | 7723          | 4,8             | 1,556                  | 0,234          |
|              |             |            |            |          |                  |                      |              |                     |                     |                            |               |                 |                        |                |
| 829,6÷1422,5 | 0,7÷0,97    | 90         | 100        | 50       | 3817,5           | 6200                 | 0,2291       | $4,4x10^{4}$        | 0,68                | 1,35                       | 8,676         | 5,1             | 1,30                   | 0,0209         |
|              |             |            |            |          |                  |                      |              |                     |                     |                            |               |                 |                        |                |
| 502,9÷713,6  | 0,61÷0,87   | 28         | 150        | 40       | 6905,6           | 9800                 | 0,4059       | $9,9 \times 10^4$   |                     |                            |               | <u> </u>        | 0,755                  | 0,016          |
| 8898÷1140    | 0,72÷0,92   | 28         | 150        | 45       | 7800,6           | 10000                | 0,4293       | $9,9 \times 10^4$   | 0,545               | 0,95                       | 9,99          | 7,9             | 1,239                  | 0,0215         |
| 1683,8÷1781  | 1,06÷1,23   | 28         | 150        | 50       | 8981,5           | 9500                 | 0,4608       | $9,9 \times 10^4$   | 1,5                 | 1,3                        | 8,15          | 8,1             | 1,815                  | 0,0268         |
| 195,3÷372,5  | 0,43÷0,83   | 60         | 150        | 40       | 4717,8           | 9000                 | 0,2978       | $9,9 \times 10^4$   |                     |                            |               |                 | 0,67                   | 0,01465        |
| 417,3÷677,7  | 0,56÷0,9    | 60         | 150        | 45       | 5788,3           | 9400                 | 0,3527       | $9,9 \times 10^4$   | 0,6                 | 0,9                        | 10,2          | 9,95            | 1,142                  | 0,0192         |
| 1155,2÷1473  | 0,80÷1,06   | 60         | 150        | 50       | 7057,5           | 9000                 | 0,4055       | $9,9 \text{ x}10^4$ | 0,748               | 1,2                        | 11,26         | 10,5            | 1,556                  | 0,234          |
| 799,4÷1331,3 | 0,61÷0,93   | 90         | 150        | 50       | 4984,4           | 8300                 | 0,3527       | $9,9 \times 10^4$   | 0,35                | 1,11                       | 15,6          | 8,1             | 1,30                   | 0,0209         |

Tabla 3.4. Parámetros del hidrotransporte de las pulpas de colas, en diferentes regímenes de flujo, para las concentraciones 40-50% (plásticos Bingham5), obtenidos en la instalación experimental (Muestra R-1).

| dP (kgf/cm2) | dP (Pa)    | Q (m3/h) | iexp (Pa/m) | v (m/s) | Re         | fexp       | ft         | Fr         |
|--------------|------------|----------|-------------|---------|------------|------------|------------|------------|
| 0,19999963   | 19619,964  | 20,3472  | 1335,6      | 0,72    | 4701,49254 | 0,07361111 | 0,00720208 | 0,52844037 |
| 0,23599987   | 23151,5869 | 29,3904  | 1576,01     | 1,04    | 6791,04478 | 0,04163171 | 0,00670866 | 1,10254842 |
| 0,25999952   | 25505,9532 | 36,1728  | 1736,28     | 1,28    | 8358,20896 | 0,03027832 | 0,00644513 | 1,67013252 |
| 0,27999949   | 27467,9496 | 46,629   | 1869,84     | 1,65    | 10774,2537 | 0,01962314 | 0,00613689 | 2,77522936 |
| 0,30799884   | 30214,6858 | 53,1288  | 2056,82     | 1,88    | 12276,1194 | 0,01662695 | 0,00598426 | 3,60285423 |
| 0,35999934   | 35315,9352 | 57,3678  | 2404,08     | 2,03    | 13255,597  | 0,0166682  | 0,00589626 | 4,20071356 |
| 0,39199988   | 38455,1882 | 60,1938  | 2617,78     | 2,13    | 13908,5821 | 0,01648564 | 0,00584179 | 4,62477064 |
| 0,41999923   | 41201,9244 | 64,1502  | 2804,76     | 2,27    | 14822,7612 | 0,01555163 | 0,00577046 | 5,25270133 |
| 0,46799854   | 45910,657  | 68,3892  | 3125,3      | 2,42    | 15802,2388 | 0,0152473  | 0,00569963 | 5,96982671 |
| 0,51999905   | 51011,9064 | 72,6282  | 3472,56     | 2,57    | 16781,7164 | 0,01502157 | 0,00563386 | 6,73282365 |
| 0,55999897   | 54935,8992 | 76,8672  | 3739,68     | 2,72    | 17761,194  | 0,01444204 | 0,00557252 | 7,54169215 |
| 0,5999989    | 58859,892  | 82,5192  | 4006,8      | 2,92    | 19067,1642 | 0,01342653 | 0,00549673 | 8,69153925 |
| 0,63999883   | 62783,8848 | 86,7582  | 4273,92     | 3,07    | 20046,6418 | 0,01295632 | 0,00544384 | 9,60744139 |
| 0,68799964   | 67492,7643 | 90,9972  | 4594,47     | 3,22    | 21026,1194 | 0,01266064 | 0,00539395 | 10,5692151 |
| 0,71999868   | 70631,8704 | 97,7796  | 4808,16     | 3,46    | 22593,2836 | 0,01147516 | 0,00531963 | 12,2034659 |

Tabla 3.6. Mediciones de la cola a 50% en peso de sólido en la tubería de 100 mm.

| Re /Fr     | ical (Pa/m) | phi        | He         | iadm1      | С           | iadm2      | Recr    |
|------------|-------------|------------|------------|------------|-------------|------------|---------|
| 8896,92164 | 130,674531  | 10,2208134 | 44222,6832 | 0,14722222 | -1,43380059 | 692,164179 | 5166,44 |
| 6159,40729 | 253,962956  | 6,20566884 | 44222,6832 | 0,08326342 | -1,43380059 | 565,445608 | 5166,44 |
| 5004,51842 | 369,589432  | 4,6978616  | 44222,6832 | 0,06055664 | -1,43380059 | 506,145056 | 5166,44 |
| 3882,29308 | 584,76937   | 3,1975683  | 44222,6832 | 0,03924628 | -1,43380059 | 422,849389 | 5166,44 |
| 3407,33169 | 740,277181  | 2,77844577 | 44222,6832 | 0,0332539  | -1,43380059 | 408,228803 | 5166,44 |
| 3155,55841 | 850,425883  | 2,82691302 | 44222,6832 | 0,03333641 | -1,43380059 | 441,893978 | 5166,44 |
| 3007,41013 | 927,626341  | 2,82201991 | 44222,6832 | 0,03297129 | -1,43380059 | 458,583841 | 5166,44 |
| 2821,93109 | 1040,7103   | 2,69504395 | 44222,6832 | 0,03110326 | -1,43380059 | 461,036229 | 5166,44 |
| 2647,01801 | 1168,27611  | 2,67513816 | 44222,6832 | 0,0304946  | -1,43380059 | 481,882941 | 5166,44 |
| 2492,52279 | 1302,38769  | 2,66630284 | 44222,6832 | 0,03004315 | -1,43380059 | 504,17562  | 5166,44 |
| 2355,06749 | 1442,96946  | 2,59165569 | 44222,6832 | 0,02888408 | -1,43380059 | 513,015803 | 5166,44 |
| 2193,7615  | 1640,35536  | 2,44264146 | 44222,6832 | 0,02685307 | -1,43380059 | 512,011859 | 5166,44 |
| 2086,57446 | 1795,76777  | 2,37999594 | 44222,6832 | 0,02591264 | -1,43380059 | 519,461325 | 5166,44 |
| 1989,37378 | 1957,43202  | 2,34719262 | 44222,6832 | 0,02532128 | -1,43380059 | 532,408223 | 5166,44 |
| 1851,38254 | 2228,95674  | 2,15713473 | 44222,6832 | 0,02295032 | -1,43380059 | 518,522992 | 5166,44 |

| dP (kgf/cm2) | dP (Pa) | Q (m3/h) | iexp (Pa/m) | v (m/s) | Re         | fexp       | ft         | Fr         |
|--------------|---------|----------|-------------|---------|------------|------------|------------|------------|
| 0,16819572   | 16500   | 33,912   | 1100        | 1,2     | 11672,3549 | 0,02680312 | 0,00604869 | 1,46788991 |
| 0,18730887   | 18375   | 39,564   | 1225        | 1,4     | 13617,7474 | 0,02192982 | 0,00587138 | 1,99796126 |
| 0,2          | 19620   | 47,4768  | 1308        | 1,68    | 16341,2969 | 0,01626089 | 0,00566837 | 2,87706422 |
| 0,21100917   | 20700   | 54,5418  | 1380        | 1,93    | 18773,0375 | 0,01299929 | 0,00551862 | 3,79704383 |
| 0,22553517   | 22125   | 61,3242  | 1475        | 2,17    | 21107,5085 | 0,01099076 | 0,00539518 | 4,80010194 |
| 0,24082569   | 23625   | 64,998   | 1575        | 2,3     | 22372,0137 | 0,01044672 | 0,00533494 | 5,39245668 |
| 0,26146789   | 25650   | 73,476   | 1710        | 2,6     | 25290,1024 | 0,00887574 | 0,00521018 | 6,89092762 |
| 0,26605505   | 26100   | 79,128   | 1740        | 2,8     | 27235,4949 | 0,00778733 | 0,00513619 | 7,99184506 |
| 0,2706422    | 26550   | 84,78    | 1770        | 3       | 29180,8874 | 0,00690058 | 0,00506826 | 9,17431193 |
| 0,2940367    | 28845   | 93,258   | 1923        | 3,3     | 32098,9761 | 0,00619593 | 0,00497588 | 11,1009174 |
| 0,32125382   | 31515   | 98,91    | 2101        | 3,5     | 34044,3686 | 0,0060179  | 0,00491969 | 12,4872579 |
| 0,33525994   | 32889   | 103,7142 | 2192,6      | 3,67    | 35697,9522 | 0,00571192 | 0,00487486 | 13,7297655 |
| 0,34862385   | 34200   | 115,866  | 2280        | 4,1     | 39880,5461 | 0,00475907 | 0,00477173 | 17,1355759 |
| 0,3632263    | 35632,5 | 124,344  | 2375,5      | 4,4     | 42798,6348 | 0,00430531 | 0,00470713 | 19,7349643 |
| 0,43593272   | 42765   | 129,996  | 2851        | 4,6     | 44744,0273 | 0,00472756 | 0,00466692 | 21,5698267 |

Tabla 3.10. Mediciones para la Cola 40%, tubería de 100 mm T=60 grados

| Re/Fr      | ical (Pa/m) | phi        | He         | iadm1       | С           | iadm2      | Recr    |
|------------|-------------|------------|------------|-------------|-------------|------------|---------|
| 7951,79181 | 248,238033  | 4,43123073 | 44485,0843 | 0,053606238 | -1,43337744 | 625,711035 | 5166,44 |
| 6815,82155 | 327,975324  | 3,73503709 | 44485,0843 | 0,043859649 | -1,43337744 | 597,269625 | 5166,44 |
| 5679,85129 | 455,954684  | 2,86870614 | 44485,0843 | 0,032521781 | -1,43337744 | 531,448074 | 5166,44 |
| 4944,11926 | 585,85463   | 2,35553314 | 44485,0843 | 0,025998579 | -1,43337744 | 488,072291 | 5166,44 |
| 4397,30423 | 724,053319  | 2,03714279 | 44485,0843 | 0,021981518 | -1,43337744 | 463,975087 | 5166,44 |
| 4148,76094 | 804,322114  | 1,9581707  | 44485,0843 | 0,020893443 | -1,43337744 | 467,428402 | 5166,44 |
| 3670,05776 | 1003,79412  | 1,70353657 | 44485,0843 | 0,017751479 | -1,43337744 | 448,936729 | 5166,44 |
| 3407,91078 | 1147,63127  | 1,51616643 | 44485,0843 | 0,015574651 | -1,43337744 | 424,183325 | 5166,44 |
| 3180,71672 | 1300,00768  | 1,36153042 | 44485,0843 | 0,01380117  | -1,43337744 | 402,730375 | 5166,44 |
| 2891,56066 | 1544,3385   | 1,24519333 | 44485,0843 | 0,012391861 | -1,43337744 | 397,766056 | 5166,44 |
| 2726,32862 | 1717,58708  | 1,22322764 | 44485,0843 | 0,012035804 | -1,43337744 | 409,751341 | 5166,44 |
| 2600,04092 | 1871,28264  | 1,17170969 | 44485,0843 | 0,011423848 | -1,43337744 | 407,807981 | 5166,44 |
| 2327,3537  | 2286,06323  | 0,99734774 | 44485,0843 | 0,009518144 | -1,43337744 | 379,588779 | 5166,44 |
| 2168,67049 | 2597,20838  | 0,91463589 | 44485,0843 | 0,008610628 | -1,43337744 | 368,523115 | 5166,44 |
| 2074,38047 | 2814,43492  | 1,01299198 | 44485,0843 | 0,009455112 | -1,43337744 | 423,059801 | 5166,44 |

| dP (kgf/cm2) | dP (Pa)    | Q (m3/h) | iexp (Pa/m) | v (m/s) | Re       | Lamda      | ft         |
|--------------|------------|----------|-------------|---------|----------|------------|------------|
| 0,06796933   | 6667,791   | 18,0864  | 453,9       | 0,64    | 14010,6  | 0,20057091 | 0,00499029 |
| 0,0942496    | 9245,886   | 29,3904  | 629,4       | 1,04    | 25772,9  | 0,10532411 | 0,00419966 |
| 0,10557034   | 10356,45   | 32,2164  | 705         | 1,14    | 28917,6  | 0,09818545 | 0,00406503 |
| 0,1190474    | 11678,55   | 41,8248  | 795         | 1,48    | 40115,47 | 0,06569184 | 0,0037054  |
| 0,1359686    | 13338,52   | 50,868   | 908         | 1,8     | 51276,2  | 0,05072342 | 0,00345674 |
| 0,15299463   | 15008,773  | 56,2374  | 1021,7      | 1,99    | 58152,1  | 0,04669657 | 0,00333581 |
| 0,17000568   | 16677,557  | 66,411   | 1135,3      | 2,35    | 71634,6  | 0,03720854 | 0,00314466 |
| 0,18700175   | 18344,872  | 77,715   | 1248,8      | 2,75    | 87242,3  | 0,02988789 | 0,00297404 |
| 0,20747192   | 20352,995  | 93,258   | 1385,5      | 3,3     | 109652,9 | 0,02302748 | 0,00278771 |
| 0,22974651   | 22538,1325 | 108,801  | 1534,25     | 3,85    | 133036,7 | 0,01873451 | 0,0026393  |
| 0,23794506   | 23342,41   | 112,4748 | 1589        | 3,98    | 138693,8 | 0,01815622 | 0,00260838 |
| 0,25840024   | 25349,064  | 116,4312 | 1725,6      | 4,12    | 144838,8 | 0,01839981 | 0,00257657 |
| 0,27198213   | 26681,447  | 119,2572 | 1816,3      | 4,22    | 149260,7 | 0,01845994 | 0,00255474 |
| 0,30598926   | 30017,546  | 124,344  | 2043,4      | 4,4     | 157287,2 | 0,01910362 | 0,00251715 |
| 0,32298533   | 31684,861  | 128,3004 | 2156,9      | 4,54    | 163588,1 | 0,01894026 | 0,00248932 |

Tabla 3.14.Mediciones para la Cola 30% en tubería de 100 mm T=90 grados.

| Fr         | Re/Fr      | ical (Pa/m) | phi        | iadm1      | iadm2      | Recr | Fexp.      |
|------------|------------|-------------|------------|------------|------------|------|------------|
| 0,41753313 | 33555,6606 | 45,1728926  | 10,0480614 | 0,10028546 | 176,393899 | 2322 | 0,05014273 |
| 1,10254842 | 23375,7534 | 100,385891  | 6,2698054  | 0,05266205 | 150,520881 | 2322 | 0,02633103 |
| 1,32477064 | 21828,3823 | 116,752448  | 6,03841727 | 0,04909272 | 153,811079 | 2322 | 0,02454636 |
| 2,23282365 | 17966,2509 | 179,370648  | 4,43216329 | 0,03284592 | 133,60071  | 2322 | 0,01642296 |
| 3,30275229 | 15525,2939 | 247,516434  | 3,66844329 | 0,02536171 | 125,463297 | 2322 | 0,01268086 |
| 4,03679918 | 14405,4974 | 291,943865  | 3,49964539 | 0,02334828 | 127,694934 | 2322 | 0,01167414 |
| 5,62945973 | 12724,9511 | 383,796641  | 2,95807695 | 0,01860427 | 120,156184 | 2322 | 0,00930214 |
| 7,70897044 | 11316,9846 | 497,055434  | 2,51239583 | 0,01494394 | 112,9441   | 2322 | 0,00747197 |
| 11,1009174 | 9877,82322 | 670,914834  | 2,06509072 | 0,01151374 | 104,422946 | 2322 | 0,00575687 |
| 15,1095821 | 8804,7902  | 864,575141  | 1,77457103 | 0,00936726 | 99,1148561 | 2322 | 0,00468363 |
| 16,1471967 | 8589,3423  | 913,122846  | 1,74018206 | 0,00907811 | 99,2988405 | 2322 | 0,00453906 |
| 17,30316   | 8370,65598 | 966,56087   | 1,78529884 | 0,00919991 | 104,170864 | 2322 | 0,00459995 |
| 18,1533129 | 8222,22921 | 1005,45709  | 1,80644208 | 0,00922997 | 107,047982 | 2322 | 0,00461499 |
| 19,7349643 | 7969,9764  | 1076,97677  | 1,89734826 | 0,00955181 | 115,505872 | 2322 | 0,00477591 |
| 21,0108053 | 7785,90338 | 1133,92722  | 1,90215029 | 0,00947013 | 118,161912 | 2322 | 0,00473507 |

| dP (kgf/cm2) | dP (Pa)   | Q (m3/h) | iexp (Pa/m) | v (m/s) | Re         | fexp       | ft         | Fr         |
|--------------|-----------|----------|-------------|---------|------------|------------|------------|------------|
| 0,16996075   | 16673,15  | 20,3472  | 1135        | 0,72    | 5126,1244  | 0,07356952 | 0,00708452 | 0,52844037 |
| 0,20059861   | 19678,724 | 29,673   | 1339,6      | 1,05    | 7475,59809 | 0,04082852 | 0,00658698 | 1,12385321 |
| 0,22102385   | 21682,44  | 36,738   | 1476        | 1,3     | 9255,50239 | 0,0293472  | 0,00632098 | 1,72273191 |
| 0,2413293    | 23674,404 | 45,216   | 1611,6      | 1,6     | 11391,3876 | 0,0211536  | 0,00607268 | 2,60958206 |
| 0,26179946   | 25682,527 | 50,868   | 1748,3      | 1,8     | 12815,311  | 0,01813168 | 0,00593619 | 3,30275229 |
| 0,30600423   | 30019,015 | 57,6504  | 2043,5      | 2,04    | 14524,0191 | 0,0164999  | 0,00579451 | 4,24220183 |
| 0,33321293   | 32688,188 | 60,759   | 2225,2      | 2,15    | 15307,177  | 0,01617556 | 0,00573608 | 4,71202854 |
| 0,35711225   | 35032,712 | 64,998   | 2384,8      | 2,3     | 16375,1196 | 0,01514828 | 0,0056619  | 5,39245668 |
| 0,39779801   | 39023,985 | 69,237   | 2656,5      | 2,45    | 17443,0622 | 0,01487116 | 0,00559328 | 6,11875637 |
| 0,44198781   | 43359,004 | 73,476   | 2951,6      | 2,6     | 18511,0048 | 0,01467161 | 0,0055295  | 6,89092762 |
| 0,47599493   | 46695,103 | 76,8672  | 3178,7      | 2,72    | 19365,3589 | 0,01443706 | 0,00548156 | 7,54169215 |
| 0,50998708   | 50029,733 | 82,5192  | 3405,7      | 2,92    | 20789,2823 | 0,01342171 | 0,00540701 | 8,69153925 |
| 0,58217923   | 57111,782 | 86,7582  | 3887,8      | 3,07    | 21857,2249 | 0,01386099 | 0,00535498 | 9,60744139 |
| 0,58478479   | 57367,388 | 91,845   | 3905,2      | 3,25    | 23138,756  | 0,01242349 | 0,00529642 | 10,7670744 |
| 0,61199349   | 60036,561 | 98,0622  | 4086,9      | 3,47    | 24705,0718 | 0,01140518 | 0,00522988 | 12,2741081 |

Tabla 3.15. Mediciones para la Cola 50% en tubería de 100 mm T=90 grados

| Re/Fr      | ical (Pa/m) | phi        | He         | iadm1      | С           | iadm2      | Recr    |
|------------|-------------|------------|------------|------------|-------------|------------|---------|
| 9700,47847 | 109,297047  | 10,384544  | 44284,7004 | 0,14713905 | -1,43370019 | 754,253057 | 5166,44 |
| 6651,75666 | 216,12135   | 6,19836957 | 44284,7004 | 0,08165704 | -1,43370019 | 610,435179 | 5166,44 |
| 5372,57269 | 317,910042  | 4,64282283 | 44284,7004 | 0,05869441 | -1,43370019 | 543,246227 | 5166,44 |
| 4365,21531 | 462,650906  | 3,48340396 | 44284,7004 | 0,04230721 | -1,43370019 | 481,937799 | 5166,44 |
| 3880,19139 | 572,382076  | 3,05442828 | 44284,7004 | 0,03626336 | -1,43370019 | 464,726209 | 5166,44 |
| 3423,69828 | 717,646087  | 2,84750386 | 44284,7004 | 0,03299981 | -1,43370019 | 479,289802 | 5166,44 |
| 3248,53232 | 789,087031  | 2,81996778 | 44284,7004 | 0,03235111 | -1,43370019 | 495,204184 | 5166,44 |
| 3036,67152 | 891,355212  | 2,67547659 | 44284,7004 | 0,03029656 | -1,43370019 | 496,10984  | 5166,44 |
| 2850,75286 | 999,15237   | 2,65875364 | 44284,7004 | 0,02974231 | -1,43370019 | 518,796992 | 5166,44 |
| 2686,28635 | 1112,41144  | 2,6533348  | 44284,7004 | 0,02934323 | -1,43370019 | 543,172617 | 5166,44 |
| 2567,77371 | 1206,90926  | 2,63375227 | 44284,7004 | 0,02887412 | -1,43370019 | 559,157754 | 5166,44 |
| 2391,8988  | 1372,00414  | 2,48228114 | 44284,7004 | 0,02684341 | -1,43370019 | 558,055319 | 5166,44 |
| 2275,03078 | 1501,99212  | 2,58842903 | 44284,7004 | 0,02772198 | -1,43370019 | 605,925533 | 5166,44 |
| 2149,02908 | 1664,87581  | 2,34564043 | 44284,7004 | 0,02484698 | -1,43370019 | 574,92823  | 5166,44 |
| 2012,77939 | 1874,06206  | 2,18077089 | 44284,7004 | 0,02281036 | -1,43370019 | 563,531569 | 5166,44 |

| dP (kgf/cm2) | dP (Pa) | Q (m3/h)  | iexp (Pa/m) | v (m/s) | Re        | Lamda      | ft         |
|--------------|---------|-----------|-------------|---------|-----------|------------|------------|
| 0,04         | 3924    | 10,80945  | 261,6       | 0,17    | 7631,62   | 2,08890072 | 0,00592642 |
| 0,06         | 5886    | 23,52645  | 392,4       | 0,37    | 11094,8   | 0,6614598  | 0,00533094 |
| 0,07         | 6867    | 33,0642   | 457,8       | 0,52    | 33303     | 0,39070323 | 0,0039058  |
| 0,08         | 7848    | 40,05855  | 523,2       | 0,63    | 42953,19  | 0,30420373 | 0,00363442 |
| 0,09         | 8829    | 55,9548   | 588,6       | 0,88    | 68076,76  | 0,1754013  | 0,00319032 |
| 0,10001529   | 9811,5  | 68,03595  | 654,1       | 1,07    | 88823,96  | 0,13184222 | 0,00295896 |
| 0,12         | 11772   | 82,02465  | 784,8       | 1,29    | 114583,37 | 0,10883222 | 0,00275322 |
| 0,13         | 12753   | 94,74165  | 850,2       | 1,49    | 139396,04 | 0,0883744  | 0,00260465 |
| 0,14         | 13734   | 108,73035 | 915,6       | 1,71    | 166983,9  | 0,07225892 | 0,00247489 |
| 0,15001529   | 14716,5 | 118,90395 | 981,1       | 1,87    | 189855,9  | 0,06474526 | 0,0023866  |
| 0,16         | 15696   | 129,7134  | 1046,4      | 2,04    | 213705,95 | 0,05802502 | 0,00230799 |
| 0,17         | 16677   | 136,70775 | 1111,8      | 2,15    | 229353,85 | 0,05550443 | 0,0022623  |
| 0,18         | 17658   | 139,887   | 1177,2      | 2,2     | 236647,79 | 0,05612842 | 0,00224234 |
| 0,2          | 19620   | 139,887   | 1308        | 2,2     | 236647,69 | 0,06236491 | 0,00224234 |
| 0,22         | 21582   | 139,887   | 1438,8      | 2,2     | 236647,79 | 0,0686014  | 0,00224234 |

Tabla 3.18. Mediciones de la cola a 30% en peso de sólido en la tubería de 150 mm a T = 28°C.

| Fr         | Re/Fr      | ical (Pa/m) | phi        | iadm1      | iadm2  | Recr | Fexp.      |
|------------|------------|-------------|------------|------------|--------|------|------------|
| 0,01963982 | 388578,852 | 2,96874114  | 88,1181578 | 1,04445036 | 746    | 2415 | 0,52222518 |
| 0,09303432 | 119254,917 | 12,6499748  | 31,0198246 | 0,3307299  | 680,2  | 2415 | 0,16536495 |
| 0,18375807 | 181232,857 | 18,3062303  | 25,0078794 | 0,19535162 | 638,2  | 2415 | 0,09767581 |
| 0,26972477 | 159248,221 | 25,0033626  | 20,9251855 | 0,15210187 | 645,2  | 2415 | 0,07605093 |
| 0,52626572 | 129358,151 | 42,8234533  | 13,7448046 | 0,08770065 | 586,02 | 2415 | 0,04385033 |
| 0,77804961 | 114162,335 | 58,7203388  | 11,1392409 | 0,06592111 | 574,8  | 2415 | 0,03296055 |
| 1,13088685 | 101321,693 | 79,4150904  | 9,8822528  | 0,05441611 | 611,9  | 2415 | 0,02720805 |
| 1,50873259 | 92392,8079 | 100,231606  | 8,48235438 | 0,0441872  | 604,4  | 2415 | 0,0220936  |
| 1,98715596 | 84031,6025 | 125,43835   | 7,29920314 | 0,03612946 | 596,11 | 2415 | 0,01806473 |
| 2,37641862 | 79891,606  | 144,658587  | 6,78217603 | 0,03237263 | 622,28 | 2415 | 0,01618631 |
| 2,82813456 | 75564,2795 | 166,485823  | 6,28521985 | 0,02901251 | 620,16 | 2415 | 0,01450625 |
| 3,14135236 | 73011,1823 | 181,262822  | 6,13363507 | 0,02775222 | 630,3  | 2415 | 0,01387611 |
| 3,28916072 | 71947,7733 | 188,117584  | 6,25778822 | 0,02806421 | 652,2  | 2415 | 0,0140321  |
| 3,28916072 | 71947,7429 | 188,117606  | 6,95309719 | 0,03118245 | 652,2  | 2415 | 0,01559123 |
| 3,28916072 | 71947,7733 | 188,117584  | 7,64840783 | 0,0343007  | 652,2  | 2415 | 0,01715035 |

Tabla 3.21.Mediciones de la cola a 50% en peso de sólido en la tubería de 150 mm a T =  $27^{\circ}$ C.

| dP (kgf/cm2) | dP (Pa) | Q (m3/h) | iexp<br>(Pa/m) | v (m/s) | Re | fexp | ft | Fr |
|--------------|---------|----------|----------------|---------|----|------|----|----|
|              | /       |          | 1 - /          | /       | -  |      | -  |    |

| 0,1146789  | 11250 | 23,52645  | 750    | 0,37 | 3624,06716 | 0,23479078 | 0,00839158 | 0,09303432 |
|------------|-------|-----------|--------|------|------------|------------|------------|------------|
| 0,14525994 | 14250 | 36,24345  | 950    | 0,57 | 5583,02239 | 0,12531328 | 0,00791562 | 0,22079511 |
| 0,17584098 | 17250 | 49,5963   | 1150   | 0,78 | 7639,92537 | 0,08100873 | 0,00745065 | 0,41345566 |
| 0,18042813 | 17700 | 55,9548   | 1180   | 0,88 | 8619,40299 | 0,06530401 | 0,0072792  | 0,52626572 |
| 0,20948012 | 20550 | 61,0416   | 1370   | 0,96 | 9402,98507 | 0,06370908 | 0,00715797 | 0,62629969 |
| 0,22324159 | 21900 | 66,76425  | 1460   | 1,05 | 10284,5149 | 0,05675413 | 0,00703524 | 0,74923547 |
| 0,25229358 | 24750 | 72,4869   | 1650   | 1,14 | 11166,0448 | 0,05441235 | 0,00692446 | 0,88318043 |
| 0,28       | 27468 | 78,20955  | 1831,2 | 1,23 | 12047,5746 | 0,05187388 | 0,00682365 | 1,02813456 |
| 0,3        | 29430 | 82,02465  | 1962   | 1,29 | 12635,2612 | 0,05052924 | 0,00676121 | 1,13088685 |
| 0,33       | 32373 | 82,6605   | 2158,2 | 1,3  | 12733,209  | 0,05473035 | 0,00675115 | 1,14848794 |
| 0,35       | 34335 | 92,19825  | 2289   | 1,45 | 14202,4254 | 0,04665874 | 0,00661035 | 1,42881414 |
| 0,3853211  | 37800 | 96,01335  | 2520   | 1,51 | 14790,1119 | 0,04736634 | 0,00655882 | 1,54950731 |
| 0,4266055  | 41850 | 101,736   | 2790   | 1,6  | 15671,6418 | 0,04670759 | 0,00648595 | 1,73972137 |
| 0,48165138 | 47250 | 108,73035 | 3150   | 1,71 | 16749,0672 | 0,04616805 | 0,00640325 | 1,98715596 |
| 0,5351682  | 52500 | 113,1813  | 3500   | 1,78 | 17434,7015 | 0,04734251 | 0,00635386 | 2,15317703 |

| Re/Fr       | ical (Pa/m) | phi        | Не         | iadm1      | С           | iadm2      | Recr    |
|-------------|-------------|------------|------------|------------|-------------|------------|---------|
| 38954,0894  | 26,8055055  | 27,9793269 | 99501,0373 | 0,46958155 | -1,38923136 | 1701,79508 | 10268,3 |
| 25285,9878  | 60,0082794  | 15,8311488 | 99501,0373 | 0,25062657 | -1,37836953 | 1399,25373 | 10268,3 |
| 18478,2219  | 105,769453  | 10,8727044 | 99501,0373 | 0,16201747 | -1,37836953 | 1237,80138 | 10268,3 |
| 16378,4239  | 131,530206  | 8,97132331 | 99501,0373 | 0,13060803 | -1,37836953 | 1125,76323 | 10268,3 |
| 15013,5553  | 153,925094  | 8,90043307 | 99501,0373 | 0,12741815 | -1,37836953 | 1198,11101 | 10268,3 |
| 13726,6791  | 180,981579  | 8,06711934 | 99501,0373 | 0,11350826 | -1,37836953 | 1167,3774  | 10268,3 |
| 12642,9939  | 209,977314  | 7,85799173 | 99501,0373 | 0,10882469 | -1,37836953 | 1215,1414  | 10268,3 |
| 11717,8968  | 240,881722  | 7,6020712  | 99501,0373 | 0,10374777 | -1,37836953 | 1249,90899 | 10268,3 |
| 11172,8783  | 262,531196  | 7,47339756 | 99501,0373 | 0,10105849 | -1,37836953 | 1276,90038 | 10268,3 |
| 11086,9331  | 266,220165  | 8,10682392 | 99501,0373 | 0,10946069 | -1,37836953 | 1393,78588 | 10268,3 |
| 9940,00901  | 324,292788  | 7,05843634 | 99501,0373 | 0,09331748 | -1,37836953 | 1325,33453 | 10268,3 |
| 9545,04176  | 348,944738  | 7,22177389 | 99501,0373 | 0,09473269 | -1,37836953 | 1401,10705 | 10268,3 |
| 9008,13316  | 387,42721   | 7,20135274 | 99501,0373 | 0,09341518 | -1,37836953 | 1463,96922 | 10268,3 |
| 8428,66261  | 436,887161  | 7,21009973 | 99501,0373 | 0,0923361  | -1,37836953 | 1546,5436  | 10268,3 |
| 8097, 19835 | 469,736443  | 7,45098673 | 99501,0373 | 0,09468501 | -1,37836953 | 1650,80496 | 10268,3 |

| dP (kgf/cm2) | dP (Pa) | Q (m3/h)  | iexp (Pa/m) | v (m/s) | Re         | fexp       | ft         | Fr         |
|--------------|---------|-----------|-------------|---------|------------|------------|------------|------------|
| 0,11391437   | 11175   | 23,52645  | 745         | 0,37    | 3944,29487 | 0,24542672 | 0,00825553 | 0,09303432 |
| 0,13299694   | 13047   | 36,24345  | 869,8       | 0,57    | 6076,34615 | 0,12073653 | 0,00759493 | 0,22079511 |
| 0,15478593   | 15184,5 | 49,5963   | 1012,3      | 0,78    | 8315       | 0,07503935 | 0,00714881 | 0,41345566 |
| 0,18623853   | 18270   | 55,9548   | 1218        | 0,88    | 9381,02564 | 0,07093343 | 0,0069843  | 0,52626572 |
| 0,20542813   | 20152,5 | 61,0416   | 1343,5      | 0,96    | 10233,8462 | 0,06574523 | 0,00686799 | 0,62629969 |
| 0,2293578    | 22500   | 66,76425  | 1500        | 1,05    | 11193,2692 | 0,06135948 | 0,00675022 | 0,74923547 |
| 0,25428135   | 24945   | 72,4869   | 1663        | 1,14    | 12152,6923 | 0,05771006 | 0,00664393 | 0,88318043 |
| 0,28120795   | 27586,5 | 78,20955  | 1839,1      | 1,23    | 13112,1154 | 0,05482317 | 0,00654721 | 1,02813456 |
| 0,31559633   | 30960   | 82,02465  | 2064        | 1,29    | 13751,7308 | 0,05593701 | 0,0064873  | 1,13088685 |
| 0,31345566   | 30750   | 87,7473   | 2050        | 1,38    | 14711,1538 | 0,04854726 | 0,00640341 | 1,2941896  |
| 0,33256881   | 32625   | 92,19825  | 2175        | 1,45    | 15457,3718 | 0,04665436 | 0,00634255 | 1,42881414 |
| 0,36085627   | 35400   | 96,01335  | 2360        | 1,51    | 16096,9872 | 0,0466796  | 0,00629311 | 1,54950731 |
| 0,39892966   | 39135   | 101,736   | 2609        | 1,6     | 17056,4103 | 0,04596245 | 0,00622318 | 1,73972137 |
| 0,4559633    | 44730   | 108,73035 | 2982        | 1,71    | 18229,0385 | 0,04599223 | 0,00614383 | 1,98715596 |
| 0,49399083   | 48460,5 | 113,1813  | 3230,7      | 1,78    | 18975,2564 | 0,045986   | 0,00609645 | 2,15317703 |

Tabla 3.27.Mediciones para la Cola 50% en tubería de 150 mm T=60 grados

| Re/Fr      | ical (Pa/m) | phi        | He         | iadm1      | С           | iadm2      | Recr    |
|------------|-------------|------------|------------|------------|-------------|------------|---------|
| 42396,1279 | 25,0598955  | 29,7287752 | 99495,7265 | 0,49085343 | -1,38923309 | 1936,07069 | 10268,3 |
| 27520,2935 | 54,7147734  | 15,8969862 | 99495,7265 | 0,24147307 | -1,38923309 | 1467,27395 | 10268,3 |
| 20110,9837 | 96,4392198  | 10,4967668 | 99495,7265 | 0,15007869 | -1,38923309 | 1247,90434 | 10268,3 |
| 17825,6447 | 119,927541  | 10,1561325 | 99495,7265 | 0,14186686 | -1,38923309 | 1330,85664 | 10268,3 |
| 16340,1743 | 140,346911  | 9,572708   | 99495,7265 | 0,13149045 | -1,38923309 | 1345,65304 | 10268,3 |
| 14939,5879 | 165,016665  | 9,08999103 | 99495,7265 | 0,12271896 | -1,38923309 | 1373,62637 | 10268,3 |
| 13760,1468 | 191,454601  | 8,68613234 | 99495,7265 | 0,11542013 | -1,38923309 | 1402,66532 | 10268,3 |
| 12753,3068 | 219,63284   | 8,3735201  | 99495,7265 | 0,10964634 | -1,38923309 | 1437,69543 | 10268,3 |
| 12160,1297 | 239,372551  | 8,62254254 | 99495,7265 | 0,11187403 | -1,38923309 | 1538,46154 | 10268,3 |
| 11367,0778 | 270,395992  | 7,58147332 | 99495,7265 | 0,09709452 | -1,38923309 | 1428,37235 | 10268,3 |
| 10818,3223 | 295,685972  | 7,35577676 | 99495,7265 | 0,09330873 | -1,38923309 | 1442,30769 | 10268,3 |
| 10388,4552 | 318,163302  | 7,41757452 | 99495,7265 | 0,0933592  | -1,38923309 | 1502,80183 | 10268,3 |
| 9804,10457 | 353,251122  | 7,38568072 | 99495,7265 | 0,09192489 | -1,38923309 | 1567,90865 | 10268,3 |
| 9173,43117 | 398,348066  | 7,4859156  | 99495,7265 | 0,09198445 | -1,38923309 | 1676,78812 | 10268,3 |
| 8812,67826 | 428,299616  | 7,54308404 | 99495,7265 | 0,091972   | -1,38923309 | 1745,19231 | 10268,3 |

Tabla 3.37 Mediciones de la cola a 50% en peso de sólido en la tubería de 150 mm. Muestra R-3 28 °C.

| dP (kgf/cm2) | dP (Pa)   | Q (m3/h)  | iexp (Pa/m) | v (m/s) | Re         | fexp       | ft         | Fr         |
|--------------|-----------|-----------|-------------|---------|------------|------------|------------|------------|
| 0,13819981   | 13557,401 | 23,53644  | 922,9       | 0,37    | 3133,06452 | 0,33978917 | 0,00862846 | 0,09303432 |
| 0,16307248   | 15997,41  | 36,25884  | 1089        | 0,57    | 4826,6129  | 0,16894156 | 0,00793802 | 0,22079511 |
| 0,17964927   | 17623,593 | 50,25348  | 1199,7      | 0,79    | 6689,51613 | 0,09688952 | 0,00745339 | 0,42412504 |
| 0,19348572   | 18980,949 | 56,61468  | 1292,1      | 0,89    | 7536,29032 | 0,08221943 | 0,0072839  | 0,53829426 |
| 0,21281782   | 20877,428 | 61,70364  | 1421,2      | 0,97    | 8213,70968 | 0,07613249 | 0,00716389 | 0,63941556 |
| 0,24875666   | 24403,028 | 66,7926   | 1661,2      | 1,05    | 8891,12903 | 0,07594543 | 0,00705515 | 0,74923547 |
| 0,26245834   | 25747,163 | 73,1538   | 1752,7      | 1,15    | 9737,90323 | 0,06679904 | 0,00693236 | 0,89874278 |
| 0,29020612   | 28469,22  | 78,24276  | 1938        | 1,23    | 10415,3226 | 0,0645657  | 0,00684297 | 1,02813456 |
| 0,32337467   | 31723,055 | 82,6956   | 2159,5      | 1,3     | 11008,0645 | 0,06440578 | 0,00677025 | 1,14848794 |
| 0,35931351   | 35248,655 | 89,0568   | 2399,5      | 1,4     | 11854,8387 | 0,06170538 | 0,00667411 | 1,33197418 |
| 0,38694149   | 37958,96  | 92,87352  | 2584        | 1,46    | 12362,9032 | 0,06110055 | 0,00662027 | 1,44858987 |
| 0,41456947   | 40669,265 | 96,05412  | 2768,5      | 1,51    | 12786,2903 | 0,06119965 | 0,00657739 | 1,54950731 |
| 0,44224238   | 43383,977 | 101,7792  | 2953,3      | 1,6     | 13548,3871 | 0,05814682 | 0,00650431 | 1,73972137 |
| 0,47541093   | 46637,812 | 108,77652 | 3174,8      | 1,71    | 14479,8387 | 0,05472459 | 0,00642137 | 1,98715596 |
| 0,49752829   | 48807,525 | 113,22936 | 3322,5      | 1,78    | 15072,5806 | 0,05285466 | 0,00637184 | 2,15317703 |

| Re /Fr     | ical (Pa/m) | phi        | He         | iadm1      | С           | iadm2      | Recr    |
|------------|-------------|------------|------------|------------|-------------|------------|---------|
| 33676,4385 | 27,5621671  | 33,4843046 | 99154,5265 | 0,57783575 | -1,38934479 | 1810,39669 | 10268,3 |
| 21860,1443 | 60,1781332  | 18,0962742 | 99154,5265 | 0,28729719 | -1,38934479 | 1386,67233 | 10268,3 |
| 15772,5092 | 108,538796  | 11,0531906 | 99154,5265 | 0,16476755 | -1,38934479 | 1102,21519 | 10268,3 |
| 14000,3171 | 134,623411  | 9,59788491 | 99154,5265 | 0,13982001 | -1,38934479 | 1053,72418 | 10268,3 |
| 12845,6518 | 157,278504  | 9,03619987 | 99154,5265 | 0,12946875 | -1,38934479 | 1063,41869 | 10268,3 |
| 11866,9355 | 181,493849  | 9,15292729 | 99154,5265 | 0,12915063 | -1,38934479 | 1148,29493 | 10268,3 |
| 10835,0281 | 213,921209  | 8,19320351 | 99154,5265 | 0,11359654 | -1,38934479 | 1106,19215 | 10268,3 |
| 10130,3108 | 241,563539  | 8,02273394 | 99154,5265 | 0,10979859 | -1,38934479 | 1143,58773 | 10268,3 |
| 9584,83251 | 266,973702  | 8,08881167 | 99154,5265 | 0,10952663 | -1,38934479 | 1205,67618 | 10268,3 |
| 8900,20161 | 305,229291  | 7,86130321 | 99154,5265 | 0,1049344  | -1,38934479 | 1243,98041 | 10268,3 |
| 8534,4399  | 329,274772  | 7,84754929 | 99154,5265 | 0,10390585 | -1,38934479 | 1284,57799 | 10268,3 |
| 8251,84256 | 349,932428  | 7,91152742 | 99154,5265 | 0,10407438 | -1,38934479 | 1330,72527 | 10268,3 |
| 7787,67641 | 388,523825  | 7,60133565 | 99154,5265 | 0,09888281 | -1,38934479 | 1339,70262 | 10268,3 |
| 7286,71477 | 438,123772  | 7,24635412 | 99154,5265 | 0,09306307 | -1,38934479 | 1347,5382  | 10268,3 |
| 7000,15857 | 471,066034  | 7,05315128 | 99154,5265 | 0,08988313 | -1,38934479 | 1354,77075 | 10268,3 |

Tabla 3.38 Mediciones de la cola a 50% en peso de sólido en la tubería de 150 mm. Muestra R-3 90 °C.

| dP (kgf/cm2) | dP (Pa)   | Q (m3/h)  | iexp (Pa/m) | v (m/s) | Re    | fexp       | ft         | Fr         |
|--------------|-----------|-----------|-------------|---------|-------|------------|------------|------------|
| 0,11749005   | 11525,774 | 23,53644  | 784,6       | 0,37    | 3441  | 0,2888705  | 0,00847527 | 0,09303432 |
| 0,13863407   | 13600,002 | 36,25884  | 925,8       | 0,57    | 5301  | 0,1436236  | 0,00779709 | 0,22079511 |
| 0,15272509   | 14982,331 | 50,25348  | 1019,9      | 0,79    | 7347  | 0,08236861 | 0,00732107 | 0,42412504 |
| 0,16449506   | 16136,965 | 56,61468  | 1098,5      | 0,89    | 8277  | 0,06990019 | 0,00715458 | 0,53829426 |
| 0,18093707   | 17749,927 | 61,70364  | 1208,3      | 0,97    | 9021  | 0,06472762 | 0,00703671 | 0,63941556 |
| 0,21148509   | 20746,687 | 66,7926   | 1412,3      | 1,05    | 9765  | 0,06456642 | 0,0069299  | 0,74923547 |
| 0,22313526   | 21889,569 | 73,1538   | 1490,1      | 1,15    | 10695 | 0,05679081 | 0,00680929 | 0,89874278 |
| 0,24672012   | 24203,244 | 78,24276  | 1647,6      | 1,23    | 11439 | 0,05489084 | 0,00672148 | 1,02813456 |
| 0,27491714   | 26969,371 | 82,6956   | 1835,9      | 1,3     | 12090 | 0,0547546  | 0,00665006 | 1,14848794 |
| 0,30548012   | 29967,6   | 89,0568   | 2040        | 1,4     | 13020 | 0,0524605  | 0,00655562 | 1,33197418 |
| 0,32896016   | 32270,992 | 92,87352  | 2196,8      | 1,46    | 13578 | 0,05194493 | 0,00650274 | 1,44858987 |
| 0,35248513   | 34578,791 | 96,05412  | 2353,9      | 1,51    | 14043 | 0,05203463 | 0,00646062 | 1,54950731 |
| 0,37595019   | 36880,714 | 101,7792  | 2510,6      | 1,6     | 14880 | 0,0494306  | 0,00638883 | 1,73972137 |
| 0,40419213   | 39651,248 | 108,77652 | 2699,2      | 1,71    | 15903 | 0,04652658 | 0,00630737 | 1,98715596 |
| 0,42298515   | 41494,843 | 113,22936 | 2824,7      | 1,78    | 16554 | 0,04493561 | 0,00625872 | 2,15317703 |

| Re /Fr     | ical (Pa/m) | phi        | He       | iadm1      | С           | iadm2      | Recr    |
|------------|-------------|------------|----------|------------|-------------|------------|---------|
| 36986,3514 | 23,0196447  | 34,0839317 | 99393,75 | 0,57774099 | -1,38926636 | 1988,00676 | 10268,3 |
| 24008,6842 | 50,2601715  | 18,420152  | 99393,75 | 0,28724719 | -1,38926636 | 1522,69737 | 10268,3 |
| 17322,7215 | 90,6505108  | 11,2509019 | 99393,75 | 0,16473722 | -1,38926636 | 1210,32437 | 10268,3 |
| 15376,3483 | 112,436118  | 9,76999222 | 99393,75 | 0,13980039 | -1,38926636 | 1157,12781 | 10268,3 |
| 14108,1959 | 131,357425  | 9,19856645 | 99393,75 | 0,12945524 | -1,38926636 | 1167,81572 | 10268,3 |
| 13033,2857 | 151,581837  | 9,31707935 | 99393,75 | 0,12913284 | -1,38926636 | 1260,98214 | 10268,3 |
| 11899,9565 | 178,664842  | 8,34019713 | 99393,75 | 0,11358162 | -1,38926636 | 1214,75543 | 10268,3 |
| 11125,9756 | 201,751438  | 8,16648456 | 99393,75 | 0,10978168 | -1,38926636 | 1255,79268 | 10268,3 |
| 10526,8846 | 222,973751  | 8,23370462 | 99393,75 | 0,10950921 | -1,38926636 | 1323,96635 | 10268,3 |
| 9774,96429 | 254,924433  | 8,00237143 | 99393,75 | 0,104921   | -1,38926636 | 1366,07143 | 10268,3 |
| 9373,25342 | 275,006977  | 7,98816097 | 99393,75 | 0,10388985 | -1,38926636 | 1410,61644 | 10268,3 |
| 9062,88079 | 292,260044  | 8,05412867 | 99393,75 | 0,10406925 | -1,38926636 | 1461,44454 | 10268,3 |
| 8553,09375 | 324,49119   | 7,73703594 | 99393,75 | 0,0988612  | -1,38926636 | 1471,05469 | 10268,3 |
| 8002,89474 | 365,916567  | 7,37654493 | 99393,75 | 0,09305317 | -1,38926636 | 1479,82456 | 10268,3 |
| 7688,17416 | 393,429613  | 7,17968324 | 99393,75 | 0,07641622 | -1,38926636 | 1487,72823 | 10268,3 |



Fig.- Coeficiente de corrección para las pérdidas hidráulicas en función de los número de Re y de He en tubería D = 100mm.



Fig.- Coeficiente de corrección para las pérdidas hidráulicas en función de Fry del He en tubería D = 100mm.



Fig.- Factor de fricción en función de los números Re y de He para la pulpa de cola del proceso CARON en tubería D = 100mm.



Fig.-Factor de fricción en función de los números de Re y He para pulpa de colas del proceso CARON en tubería D = 150mm.



Fig.- Factor de fricción en función de los números Re y de He para la pulpa de cola en tuberías de D = 150mm.



Fig.- Coeficiente de corrección para pérdidas hidráulicas en función de Fry del He en tubería de D = 150mm



Fig.- Coeficiente de corrección para las pérdidas hidráulicas en función de los números de Re y de He en tuberías de D = 150mm.



Fig.- Coeficiente de corrección para las pérdidas hidráulicas en función del Fr y del He en tuberías de D = 100mm y D = 150mm.



D = 100mm (Rojo) y D = 150mm (Azul).

# 100 mm

### Ecuaciones y otros resultados del ajuste mínimo cuadrado :

PHI = (2.14978579452149)\*(1)+ (-0.0598060840105121)\*(FR)+ (4.25567285274943)\*(1/FR)

Determinante de la matriz del sistema:12709702.0268345 Determinante normalizado del sistema:0.00538631573913062 Error máximo al resolver el sistema:8.32667268468867E-17

Variación explicada:652.465230843049 Grados de libertad: 2 Variación residual:42.1010718563293 Grados de libertad: 162 Variación total:694.56630269938 Grados de libertad: 164

Error estándar de una estimación:0.511368106868763 Error probable de una observación:0.343851579077342

Coeficiente de correlación, r =0.969218805524049

Para una prueba con nivel de confianza 0.95: Intervalo de confianza de r : [ 0.95834787, 0.97728541]

Para una prueba F de Fisher con nivel de confianza 0.95: Valor de Fc para el ajuste : 1255.3049 Valor de Ft por la tabla : 2.6609 El ajuste es estadísticamente significativo ya que Fc>Ft.

Coeficientes de correlación parcial: -0.42446879 0.94631472

Prueba para los Coeficientes del Modelo (0.95) Valor teórico (t de Student), t= 1.65566 t2= -5.96681209 El coeficiente 2 es estadísticamente significativo ya que t<=abs(t2). t3= 37.26138314 El coeficiente 3 es estadísticamente significativo ya que t<=abs(t3).

Ecuaciones y otros resultados del ajuste mínimo cuadrado :

PHI = (-1.11299285060411)\*(1)+ (2.83754256911439E-5)\*(RE)+ (53105.3917275308)\*(1/RE)

Determinante de la matriz del sistema:202655.016369767 Determinante normalizado del sistema:5.9830004165405E-15 Error máximo al resolver el sistema:7.27595761418343E-12

Variación explicada:664.767553272741 Grados de libertad: 2 Variación residual:29.7987492508075 Grados de libertad: 162 Variación total:694.566302523547 Grados de libertad: 164

Error estándar de una estimación:0.430215526304361 Error probable de una observación:0.289283367649107

Coeficiente de correlación, r =0.978313512863923

Para una prueba con nivel de confianza 0.95: Intervalo de confianza de r : [ 0.97060659, 0.98401608]

Para una prueba F de Fisher con nivel de confianza 0.95: Valor de Fc para el ajuste : 1806.9944 Valor de Ft por la tabla : 2.6609 El ajuste es estadísticamente significativo ya que Fc>Ft.

Coeficientes de correlación parcial: 0.32463571 0.95226340

Prueba para los Coeficientes del Modelo (0.95)
Valor teórico (t de Student), t= 1.65566 t2= 4.36854200
El coeficiente 2 es estadísticamente significativo ya que t<=abs(t2). t3= 39.70266325
El coeficiente 3 es estadísticamente significativo ya que t<=abs(t3).</li>

### Ecuaciones y otros resultados del ajuste mínimo cuadrado :

FEXP = (-0.0172955829742343)\*(1)+ (3.48576399471428E-7)\*(RE)+ (420.932157108046)\*(1/RE)

Determinante de la matriz del sistema:202655.016369767 Determinante normalizado del sistema:5.9830004165405E-15 Error máximo al resolver el sistema:5.6843418860808E-14

Variación explicada:0.0377998330477443 Grados de libertad: 2 Variación residual:0.00141276292607753 Grados de libertad: 162 Variación total:0.0392125959738214 Grados de libertad: 164

Error estándar de una estimación:0.00296224999058026 Error probable de una observación:0.00199186128974654

Coeficiente de correlación, r =0.981820607982629

Para una prueba con nivel de confianza 0.95: Intervalo de confianza de r : [ 0.97534450, 0.98660721]

Para una prueba F de Fisher con nivel de confianza 0.95: Valor de Fc para el ajuste : 2167.2330 Valor de Ft por la tabla : 2.6609 El ajuste es estadísticamente significativo ya que Fc>Ft.

Coeficientes de correlación parcial:

0.52221840 0.96334230

Prueba para los Coeficientes del Modelo (0.95) Valor teórico (t de Student), t= 1.65566 t2= 7.79392967 El coeficiente 2 es estadísticamente significativo ya que t<=abs(t2). t3= 45.70434627

El coeficiente 3 es estadísticamente significativo ya que t<=abs(t3)

### Otra forma

LN(FEXP) = (7.88775142665484)\*(1)+(-1.2472640090502)\*(LN(RE))

Determinante de la matriz del sistema:6700.13704600312 Determinante normalizado del sistema:0.000265668438176546 Error máximo al resolver el sistema:0

Variación explicada:63.1708212334096 Grados de libertad: 1 Variación residual:3.30058434475009 Grados de libertad: 163 Variación total:66.4714055780879 Grados de libertad: 164

Error estándar de una estimación:0.142737442308348 Error probable de una observación:0.0959806240923995

Coeficiente de correlación, r =0.974856810940992

Para una prueba con nivel de confianza 0.95: Intervalo de confianza de r : [ 0.96594260, 0.98145981]

Para una prueba F de Fisher con nivel de confianza 0.95: Valor de Fc para el ajuste : 3119.7033 Valor de Ft por la tabla : 3.0519 El ajuste es estadísticamente significativo ya que Fc>Ft.

Coeficientes de correlación parcial: -0.97485681

Prueba para los Coeficientes del Modelo (0.95) Valor teórico (t de Student), t= 1.65559 t2= -55.85430419 El coeficiente 2 es estadísticamente significativo ya que t<=abs(t2).

# 150 mm

### Ecuaciones y otros resultados del ajuste mínimo cuadrado :

PHI = (5.64280138442511)\*(1)+ (-0.418752094542252)\*(FR)+ (2.22857009813584)\*(1/FR)

Determinante de la matriz del sistema:17190384.7725561 Determinante normalizado del sistema:0.0643456871026736 Error máximo al resolver el sistema:4.44089209850063E-16

Variación explicada:4209.31756980229 Grados de libertad: 2 Variación residual:454.820896897133 Grados de libertad: 162 Variación total:4664.13846669943 Grados de libertad: 164

Error estándar de una estimación:1.68076605001679 Error probable de una observación:1.13017228214856

Coeficiente de correlación, r =0.949992394752315

Para una prueba con nivel de confianza 0.95: Intervalo de confianza de r : [ 0.93256384, 0.96300286]

Para una prueba F de Fisher con nivel de confianza 0.95: Valor de Fc para el ajuste : 749.6461 Valor de Ft por la tabla : 2.6609 El ajuste es estadísticamente significativo ya que Fc>Ft.

Coeficientes de correlación parcial: -0.22293834 0.92750471

Prueba para los Coeficientes del Modelo (0.95) Valor teórico (t de Student), t= 1.65566 t2= -2.91079927 El coeficiente 2 es estadísticamente significativo ya que t<=abs(t2). t3= 31.58064521 El coeficiente 3 es estadísticamente significativo ya que t<=abs(t3).

### Ecuaciones y otros resultados del ajuste mínimo cuadrado :

PHI = (-2.10963933955578)\*(1)+ (9.64457505079318E-5)\*(RE)+ (103330.406429266)\*(1/RE)

Determinante de la matriz del sistema:355779.349216844 Determinante normalizado del sistema:2.02127241583753E-14 Error máximo al resolver el sistema:1.45519152283669E-11

Variación explicada:4279.10639053897 Grados de libertad: 2 Variación residual:385.032051067278 Grados de libertad: 162 Variación total:4664.1384416063 Grados de libertad: 164

Error estándar de una estimación:1.54644864860691 Error probable de una observación:1.03985524838758

Coeficiente de correlación, r =0.957835272140527

Para una prueba con nivel de confianza 0.95: Intervalo de confianza de r : [ 0.94306028, 0.96883786]

Para una prueba F de Fisher con nivel de confianza 0.95: Valor de Fc para el ajuste : 900.2046 Valor de Ft por la tabla : 2.6609 El ajuste es estadísticamente significativo ya que Fc>Ft.

Coeficientes de correlación parcial: 0.31082817 0.92746308

Prueba para los Coeficientes del Modelo (0.95)
Valor teórico (t de Student), t= 1.65566 t2= 4.16237537
El coeficiente 2 es estadísticamente significativo ya que t<=abs(t2). t3= 31.57050554
El coeficiente 3 es estadísticamente significativo ya que t<=abs(t3).</li>

### Ecuaciones y otros resultados del ajuste mínimo cuadrado :

FEXP = (-0.0470407096075058)\*(1)+ (1.27494427285519E-6)\*(RE)+ (1009.60911804834)\*(1/RE)

Determinante de la matriz del sistema:355779.349216844 Determinante normalizado del sistema:2.02127241583753E-14 Error máximo al resolver el sistema:6.93889390390723E-18

Variación explicada:0.381581316191436 Grados de libertad: 2 Variación residual:0.03037490841784 Grados de libertad: 162 Variación total:0.411956224609283 Grados de libertad: 164

Error estándar de una estimación:0.0137355024458518 Error probable de una observación:0.00923595770245977

Coeficiente de correlación, r =0.962427482927483

Para una prueba con nivel de confianza 0.95: Intervalo de confianza de r : [ 0.94921992, 0.97224875]

Para una prueba F de Fisher con nivel de confianza 0.95: Valor de Fc para el ajuste : 1017.5532 Valor de Ft por la tabla : 2.6609 El ajuste es estadísticamente significativo ya que Fc>Ft.

Coeficientes de correlación parcial:

0.43763843 0.93893049

Prueba para los Coeficientes del Modelo (0.95) Valor teórico (t de Student), t= 1.65566 t2= 6.19498560 El coeficiente 2 es estadísticamente significativo ya que t<=abs(t2). t3= 34.72942682

El coeficiente 3 es estadísticamente significativo ya que t $\leq$ =abs(t3).

### Otra Forma

LN(FEXP) = (7.0800300678866)\*(1)+(-1.06214975811003)\*(LN(RE))

Nota:

ln(y) = A + Bln(x)

 $y = 10^{(A/\ln(10))} / X^{(-B)}$ , donde c = A/ln(10).

Determinante de la matriz del sistema:7226.8703472136 Determinante normalizado del sistema:0.00030965935196941 Error máximo al resolver el sistema:8.88178419700125E-16

Variación explicada:49.4126138786117 Grados de libertad: 1 Variación residual:5.0570204701612 Grados de libertad: 163 Variación total:54.4696343487851 Grados de libertad: 164

Error estándar de una estimación:0.176680999945483 Error probable de una observación:0.118805215826996

Coeficiente de correlación, r =0.952448899152079

Para una prueba con nivel de confianza 0.95: Intervalo de confianza de r : [ 0.93584831, 0.96483178]

Para una prueba F de Fisher con nivel de confianza 0.95: Valor de Fc para el ajuste : 1592.6880 Valor de Ft por la tabla : 3.0519 El ajuste es estadísticamente significativo ya que Fc>Ft.

Coeficientes de correlación parcial: -0.95244890 Prueba para los Coeficientes del Modelo (0.95) Valor teórico (t de Student), t= 1.65559 t2= -39.90849594 El coeficiente 2 es estadísticamente significativo ya que t<=abs(t2). Tabla 3.8. Ecuaciones y otros resultados del ajuste mínimo cuadrado :

### $\varphi = (7.621)^{*}(1) + (0.314)^{*}(Fr) + (2.122)^{*}(1/Fr) + (-2.877)^{*}(\sqrt{Fr})$

Determinante de la matriz del sistema:18178176949.2741 Determinante normalizado del sistema:0.000171342661441841 Error máximo al resolver el sistema:1.77635683940025E-15

Variación explicada:7217.22514342882 Grados de libertad: 3 Variación residual:626.28901372635 Grados de libertad: 326 Variación total:7843.5141571552 Grados de libertad: 329

Error estándar de una estimación:1.3881797863238 Error probable de una observación:0.934890078127453

Coeficiente de correlación, r =0.959245530533808

Para una prueba con nivel de confianza 0.95: Intervalo de confianza de r : [ 0.94962870, 0.96705735]

Para una prueba F de Fisher con nivel de confianza 0.95: Valor de Fc para el ajuste : 1252.2522 Valor de Ft por la tabla : 2.3995 El ajuste es estadísticamente significativo ya que Fc>Ft.

Coeficientes de correlación parcial:

0.19593804 0.87167984 -0.35298891

Prueba para los Coeficientes del Modelo (0.95)

Valor teórico (t de Student), t= 1.6509

t2= 3.60768382

El coeficiente 2 es estadísticamente significativo ya que t<=abs(t2). t3= 32.11460373

El coeficiente 3 es estadísticamente significativo ya que t<=abs(t3). t 4= -6.81187835

El coeficiente 4 es estadísticamente significativo ya que t<=abs(t4).


Fig.- Factor de fricción en función de Re y de He para pulpas de cola del proceso CARON en tubería de D = 100mm.

Tabla 3.9. Ecuaciones y otros resultados del ajuste mínimo cuadrado.

$$f_{\rm exp} = \frac{10^C}{\rm Re^{1,0621}}$$

Determinante de la matriz del sistema:355779.349216844 Determinante normalizado del sistema:2.02127241583753E-14 Error máximo al resolver el sistema:6.93889390390723E-18

Variación explicada:0.381581316191436 Grados de libertad: 2 Variación residual:0.03037490841784 Grados de libertad: 162 Variación total:0.411956224609283 Grados de libertad: 164

Error estándar de una estimación:0.0137355024458518 Error probable de una observación:0.00923595770245977

Coeficiente de correlación, r =0.962427482927483

Para una prueba con nivel de confianza 0.95: Intervalo de confianza de r : [ 0.94921992, 0.97224875]

Para una prueba F de Fisher con nivel de confianza 0.95: Valor de Fc para el ajuste : 1017.5532 Valor de Ft por la tabla : 2.6609 El ajuste es estadísticamente significativo ya que Fc>Ft.

Coeficientes de correlación parcial: 0.43763843 0.93893049

Prueba para los Coeficientes del Modelo (0.95) Valor teórico (t de Student), t= 1.65566 t2= 6.19498560 El coeficiente 2 es estadísticamente significativo ya que t<=abs(t2). t3= 34.72942682 El coeficiente 3 es estadísticamente significativo ya que t<=abs(t3).

## Tabla 4.1. Flujo de Efectivo

| UM: Miles de USD<br>Flujo de Efectivo<br>Indicadores            | 2003      | 2004    | 2005   | 2006   | 2007    | 2008    | 2009    |
|-----------------------------------------------------------------|-----------|---------|--------|--------|---------|---------|---------|
| Utilidad Neta                                                   | 13.939    | 28.827  | 32.004 | 35.441 | 39.158  | 43.622  | 45.600  |
| (+) Reserva para Contingencias                                  | 1.384     | 2.768   | 2.768  | 2.768  | 2.768   | 2.768   | 2.768   |
| (+) Depreciación                                                | 854       | 1.709   | 1.709  | 1.709  | 1.709   | 1.709   | 1.709   |
| (+) Valor Residual del Activo Fijo Neto                         | 7.533     |         |        |        |         |         | 4.737   |
| (+) Inversión para renovar la instalación actual                |           | 177.186 |        |        |         |         |         |
| (-) Gastos de Inversión                                         | 223.449   |         |        |        |         |         |         |
| (-) Gastos Preoperativos                                        | _         |         |        |        |         |         |         |
| (+-)Variaciones en el Capital de Trabajo                        | 11.680    | (5.013) | 55     | 58     | 55      | 59      | 56      |
| Flujo Neto de Efectivo                                          | (211.418) | 215.502 | 36.426 | 39.860 | 43.580  | 48.040  | 54.758  |
| Flujo Neto Acumulado                                            | (211.418) | 4.084   | 40.510 | 80.370 | 123.950 | 171.990 | 226.748 |
|                                                                 |           |         |        |        |         |         |         |
| Indicadores Económico- Financieros                              |           |         |        |        |         |         |         |
| Valor Actualizado Neto del Proyecto (VAN) @ 15%) (MUSD) 102.202 |           |         |        |        |         |         |         |
| Tasa Interna de Retorno (TIR) (%)                               |           |         | 41%    |        |         |         |         |
| Período de Recuperación (Años)                                  |           |         |        |        |         |         |         |

## Tabla 4.2. Estado de Origen y Aplicación de Fondos

| UM: Miles de USD               |         | 0004   | 0005   | 0000   | 0007   | 0000   | 0000   |
|--------------------------------|---------|--------|--------|--------|--------|--------|--------|
| Indicadores                    | 2003    | 2004   | 2005   | 2006   | 2007   | 2008   | 2009   |
| Fuentes                        |         |        |        |        |        |        |        |
| Valor Residual del activo fijo | 7.533   | -      | -      | -      | -      | -      | 4.737  |
| Capital Prestado               | 190.000 |        |        |        |        |        |        |
| Total de Ingresos              | 37.602  | 75.204 | 77.444 | 79.767 | 82.177 | 84.677 | 87.273 |
|                                | 235.135 | 75.204 | 77.444 | 79.767 | 82.177 | 84.677 | 92.010 |
| Destinos                       |         |        |        |        |        |        |        |
| Gastos de Inversión            | 223.449 | -      | -      | -      | -      | -      | -      |
| Repago de Principal            |         | 31600  | 35200  | 38800  | 43.000 | 41.400 |        |
| Intereses                      | 10.925  | 20.033 | 16.192 | 11.937 | 7.234  | 1.190  |        |
| Impuestos                      | 11.404  | 23.585 | 26.185 | 28.997 | 32.038 | 35.691 | 37.309 |
|                                | 234.853 | 75.218 | 77.577 | 79.734 | 82.272 | 78.281 | 37.309 |
|                                |         |        |        |        |        |        |        |
| Superavit o Déficit            | 282     | (15)   | (133)  | 32     | (95)   | 6.396  | 54.701 |
| Saldo Acumulado                | 282     | 267    | 134    | 166    | 71     | 6.468  | 61.169 |

Estudio de factibilidad para el mejoramiento de la eficiencia de la instalación de colas de la Empresa Comandante Ernesto Ché Guevara.

| UM: Miles de USD                    |     |        |          |         |
|-------------------------------------|-----|--------|----------|---------|
| Año 2003                            | U/M | Unidad | Precio/U | Total   |
| Construcción y Montaje              |     |        |          | 68.420  |
| Equipos                             |     |        |          | 121.079 |
| Bombas                              | uno | 3      | 8.908    | 26.723  |
| Tuberías acero D-250                | m   | 3.500  | 27       | 93.100  |
| Instrumentación                     |     |        |          |         |
| Otros                               |     |        |          |         |
| Flete y Seguro                      |     |        |          | 1.256   |
| Otros                               |     |        |          | 33.950  |
| Proyecto de Investigación           |     |        |          | 10.000  |
| Proyecto de Ingeniería para Montaje |     |        |          | 17.450  |
| Licencia Ambiental                  |     |        |          | 1.500   |
| Contingencia                        |     |        |          | 5.000   |
|                                     |     |        |          |         |
| TOTAL                               |     | -      | -        | 223.449 |

Tabla 4.3. Gastos de Inversión y Preoperativos.

Estudio de factibilidad para el mejoramiento de la eficiencia de la instalación de colas de la Empresa Comandante Ernesto Ché Guevara.

## 4.4. Gastos de Inversión y Preoperativos

| Capital de Trabajo        | 2003    | 2004    | 2005    | 2006    | 2007    | 2008      |
|---------------------------|---------|---------|---------|---------|---------|-----------|
| Materiales Auxiliares     | (63)    | (63)    | (69)    | (69)    | (76)    | (77)      |
| Productos en Proceso      |         |         |         |         |         |           |
| Efectivo en Caja          | 9.310   | (7.383) |         |         |         |           |
| Cuentas por Cobrar        |         |         |         |         |         |           |
| Cuentas por Pagar         | 2.433   | 2.433   | 124     | 127     | 131     | 136       |
| Variaciones en el Capital | 44 690  | (5.042) | EE      | E 9     | EE      | 50        |
| de Trabajo                | 11.080  | (5.013) | 55      | 56      | 55      | 29        |
| Depreciación              | 2003    | 2004    | 2005    | 2006    | 2007    | 2008      |
| Terreno                   |         |         |         |         |         |           |
| Edificaciones             |         |         |         |         |         |           |
| Maguinaria y Eguipos      | 14.212  | 28.425  | 28.425  | 28.425  | 28.425  | 28.425    |
| Equipos de Transporte     |         |         |         |         |         |           |
| Equipos de Computación    |         |         |         |         |         |           |
| Otros Equipos             |         |         |         |         |         |           |
|                           |         |         |         |         |         |           |
| Depreciación Total Anual  | 14.212  | 28.425  | 28.425  | 28.425  | 28.425  | 28.425    |
| Depreciación Acumulada    | 14.212  | 42.637  | 71.062  | 99.487  | 127.912 | 156.337   |
| Instalación Actual        | 2003    | 2004    | 2005    | 2006    | 2007    | 2008      |
| Terreno                   |         |         |         |         |         |           |
| Edificaciones             |         |         |         |         |         |           |
| Maquinaria y Equipos      | 15.067  | 30.134  | 30.134  | 30.134  | 30.134  | 30.134    |
| Equipos de Transporte     |         |         |         |         |         |           |
| Equipos de Computación    |         |         |         |         |         |           |
| Otros Equipos             |         |         |         |         |         |           |
| Doprociación Total Anual  | 15.067  | 20 124  | 20 124  | 20 124  | 20 124  | 20 124    |
| Depreciación Acumulada    | 105.468 | 135.601 | 165.735 | 195.868 | 226.002 | 256.134   |
|                           |         | 120 534 |         |         |         | 241068 82 |
| Variación de la           |         | 120.001 |         |         |         | 211000,02 |
| Depreciación              | (854)   | (1.709) | (1.709) | (1.709) | (1.709) | (1.709)   |
|                           |         |         |         |         |         |           |
| Existentes                |         |         |         |         |         |           |
| Bombas                    | 5       |         | 7.800   |         | 39.000  |           |
| Tuberías acero D-200      | 3.500   |         | 23,30   |         | 81.534  |           |
|                           |         |         |         |         |         |           |
| Gasto para renovar la     |         |         |         |         |         |           |
| Instalación actual        | _       |         |         |         | 177.186 |           |
| Bombas                    | 5       |         | 7.800   |         | 39.000  |           |
| Tuberías acero D-200      | 3.500   |         | 23,30   |         | 81.534  |           |
| Desmontaje                |         |         |         |         | 14464   |           |
| Construcción y Montaje    |         |         |         |         | 42187   |           |

| UM: MUSD<br>Año 2003<br>Capital a financiar (MP) |        | Años<br>2003 | Semestres<br>I | Capital<br>190000 | Principal | Intereses | Total (Ppal+Int.) |
|--------------------------------------------------|--------|--------------|----------------|-------------------|-----------|-----------|-------------------|
| Tasa de Interés:                                 | 11,50% |              | II             | 190000            |           | 10.925    | 10.925            |
|                                                  |        | 2004         | I              |                   | 15.800    | 10.471    | 26.271            |
|                                                  |        |              | Ш              |                   | 15.800    | 9.562     | 25.362            |
|                                                  |        | 2005         | I              |                   | 17.600    | 8.602     | 26.202            |
|                                                  |        |              | Ш              |                   | 17.600    | 7.590     | 25.190            |
| Condiciones:                                     |        | 2006         | I              |                   | 19.400    | 6.526     | 25.926            |
| 6 meses de gracia                                |        |              | П              |                   | 19.400    | 5.411     | 24.811            |
|                                                  |        | 2007         | I              |                   | 21.500    | 4.235     | 25.735            |
|                                                  |        |              | Ш              |                   | 21.500    | 2.999     | 24.499            |
|                                                  |        | 2008         | I              |                   | 41.400    | 1.190     | 42.590            |
|                                                  |        |              |                | 190.000           | 190.000   | 67.511    | - 257.511         |

## Tabla 4.5. Financiamiento del Capital prestado

| INDICADORES                                                      | 1          | 2          |
|------------------------------------------------------------------|------------|------------|
| Gastos de salario del personal de operación.                     | 17769.7    | 17769.7    |
| Gastos por consumo de agua para disminuirle la                   | 32850      | 32850      |
| temperatura a la cola.                                           |            |            |
| Gastos de energía eléctrica.                                     | 143848.4   | 182208     |
| Gastos por iluminación.                                          | 78.84      | 78.84      |
| Gastos imprevistos.                                              | 14         | 14         |
| Gastos por mantenimiento.                                        | 3772       | 4883       |
| Gastos de amortización de las bombas.                            | 2672.307   | 2672.307   |
| Gastos de amortización de las tuberías y soportes.               | 4892.065   | 4892.065   |
| Gasto del salario del personal indirecto                         | 813        | 813        |
| Total ( $G_b$ )                                                  | 205943.112 | 246180.912 |
| Gasto para transportar un m <sup>3</sup> de cola en 3.5 Km (USD) | 1.3        | 4.50       |

Tabla 4.1 Costo de Transportación de un m<sup>3</sup> de Cola, \$ USD.

| SIMBOLO                         | DENOMINACIÓN                                              | UNIDADES                                     |
|---------------------------------|-----------------------------------------------------------|----------------------------------------------|
| D                               | Diámetro interior de tubos                                | m (pie)                                      |
| d                               | Diámetro de la partícula                                  | m (pie)                                      |
| d <sub>et</sub>                 | Diámetro equivalente según tamaño de partícula.           | m (pie)                                      |
| d <sub>em</sub>                 | Diámetro equivalente según masa de partícula.             | m (pie)                                      |
| ev                              | Factor de pérdidas por fricción.                          | (adimensional)                               |
| Ec                              | Energía Cinética por unidad de masa.                      | J/kg ( lbf.pie/lb)                           |
| f, f                            | Factor de fricción de Fanning.                            | (adimensional)                               |
| F                               | Fuerza resultante en un punto.                            | N (lbf)                                      |
| $\Sigma F$                      | Pérdidas por fricción por unidad de masa.                 | J/Kg ( lbf.pie/lb)                           |
| g                               | Aceleración de la gravedad.                               | m/s <sup>2</sup> (pie/s <sup>2</sup> )       |
| gc                              | Constante adimensional.                                   | (lb.pie/lbf.s <sup>2</sup> )                 |
| He                              | Número de Hedstrom.                                       | (adimensional)                               |
| K                               | Índice de consistencia.                                   | Pa.S <sup>n</sup> (lb.s <sup>n-2</sup> /Pie) |
| Kc                              | Coeficiente de resistencia en accesorios y válvulas.      | (adimensional)                               |
| L                               | Longitud de tubos rectos.                                 | m(pie)                                       |
| n                               | Índice de flujo.                                          | (adimensional)                               |
| N; N′; Ni                       | Potencia consumida por el fluido; motor impulsor y motor  | W (lbf.pie/s)                                |
|                                 | en una bomba.                                             |                                              |
| P <sub>d</sub> ; P <sub>s</sub> | Presión de descarga y de succión, respectivamente, en     | Pa(lbf /pie)                                 |
|                                 | una bomba.                                                |                                              |
| $\Delta P_{f}$                  | Caída de presión en una tubería.                          | Pa(lbf/pie <sup>2</sup> )                    |
| $\Delta P_{b}$                  | Incremento de presión en una bomba.                       | Pa(lbf/pie <sup>2</sup> )                    |
| P <sub>1</sub>                  | Número de plasticidad.                                    | (adimensional)                               |
| Q                               | Flujo volumétrico.                                        | m <sup>3</sup> /s(pie <sup>3</sup> /s)       |
| Qm                              | Flujo másico.                                             | Kg/s(lb/s)                                   |
| R <sub>e</sub>                  | Número de Reynolds.                                       | (adimensional)                               |
| R <sub>ecr</sub>                | Número de Reynolds crítico.                               | (adimensional)                               |
| t                               | Tiempo.                                                   | s(s)                                         |
| Ws                              | Trabajo por unidad de masa en una bomba.                  | J/kg ( lbf.pie /lb)                          |
| Z                               | Altura de un punto con relación a un plano de referencia. | m(pie)                                       |
| V                               | Velocidad del flujo.                                      | m/s (pie/s)                                  |
| Vmáx.                           | Velocidad máxima del flujo.                               | m/s (pie/s)                                  |
| Vm                              | Velocidad media del flujo.                                | m/s (pie/s)                                  |
| Vcr                             | Velocidad crítica del flujo.                              | m/s (pie/s)                                  |
| Vp                              | Velocidad límite de caída de las partículas.              | m/s (pie/s)                                  |
| KT1                             | Coeficiente de consistencia conocido a una temperatura    | $P_aS^n$                                     |
|                                 | dada.                                                     | - 0                                          |
| KT <sub>i</sub>                 | Coeficiente de consistencia a una temperatura dada.       | P <sub>a.</sub> S''                          |
| Ht                              | Tensión de vapor del fluido.                              | °C                                           |
| Hs                              | Altura de succión.                                        | m                                            |
| (NPSH) <sub>A</sub>             | Altura positiva neta de carga de succión admisible.       | m                                            |
| (NPSH) <sub>R</sub>             | Altura positiva neta de carga de succión requerida.       | m                                            |
| $\sum h$                        | Pérdidas hidráulicas en la línea de succión.              | m                                            |
| i.e.p                           | Punto izoeléctrico.                                       | (adimensional)                               |

| P.Z.C          | Punto de carga cero.                                                                   | (adimensional)                             |  |
|----------------|----------------------------------------------------------------------------------------|--------------------------------------------|--|
| Т              | Temperatura.                                                                           | °C                                         |  |
| W              | Área de la sección transversal del conducto.                                           | m <sup>2</sup> (pie <sup>2</sup> )         |  |
| S              | Concentración másica.                                                                  | %                                          |  |
| Cw             | Concentración volumétrica.                                                             | %                                          |  |
| Vs             | Volumen de sólido.                                                                     | m <sup>3</sup> (pie <sup>3</sup> )         |  |
| VI             | Volumen de líquido.                                                                    | m³(pie³)                                   |  |
| ms             | Masa de sólido.                                                                        | Kg(lb)                                     |  |
| ms             | Masa de líquido.                                                                       | Kg(lb)                                     |  |
| i              | Pérdidas específicas de presión.                                                       | P <sub>a/m</sub> (lbf/pie)                 |  |
| Hmáx.          | Intensidad de campo máxima efectiva aplicada la<br>muestra                             | k A/m (Oe)                                 |  |
| Hdmáx.         | Intensidad del campo de desmagnetización máxima                                        | k A/m (Oe)                                 |  |
|                | sobre la muestra.                                                                      |                                            |  |
| Mmáx.          | Magnetización máxima en la muestra.                                                    | k A/m (Oe)                                 |  |
| Bmáx.          | Inducción máxima en la muestra.                                                        | k A/m (Oe)                                 |  |
| pmáx.          | Momento magnético máximo en la muestra.                                                | k A/m (Oe)                                 |  |
| Mr.            | Magnetización remanente en la muestra.                                                 | k A/m (Oe)                                 |  |
| Br.            | Inducción remanente en la muestra .                                                    | T ( Gauss)                                 |  |
| Pr.            | Momento magnético remanente en la muestra.                                             | -                                          |  |
| Hcm.           | Campo coercitivo de inducción (H para M=0).                                            | k A/m (Oe)                                 |  |
| Hcb.           | Campo coercitivo de inducción (Hpara B= 0)                                             | k A/m (Oe)                                 |  |
| BHmáx.         | Producto BH máximo.                                                                    | T . A/m (M gauss<br>Oe)                    |  |
| Krec.          | Permeabilidad magnética recoil relativa.                                               | -                                          |  |
| Kmáx.          | Permeabilidad magnética relativa máxima.                                               | -                                          |  |
| Ucpi.          | Energía de primera imanación                                                           | Joule(erg)                                 |  |
| Umag.          | Energía de magnetización en un ciclo.                                                  | Joule(erg)                                 |  |
|                | Símbolos Griegos                                                                       |                                            |  |
| α              | Parámetros de corrección de energía cinética en el modelo reológico.                   | (adimensional)                             |  |
| αc             | Parámetro que define el Reynolds crítico en plástico                                   | (adimensional)                             |  |
|                | Bingham.                                                                               |                                            |  |
| β              | Parametro para el coeficiente Fanning                                                  | (adimensional)                             |  |
| βi             | Coeficiente de corrección de sobrecargas (incremento de potencia reguerida) en bombas. | (adimensional)                             |  |
| γ              | Velocidad de deformación (gradiente de velocidad).                                     | 1/s (1/s)                                  |  |
| ۲              | Potencial Zeta.                                                                        | (mV)                                       |  |
| μ              | Viscosidad dinámica.                                                                   | Pas. (Ib/ Pie.s)                           |  |
| μ <sub>a</sub> | Viscocidad aparente con fluidos no newtonianos Pas. ( lb/ Pie.                         |                                            |  |
| π              | Constante matemática.                                                                  | $(\pi = 3.1416)$                           |  |
| e              | Constante matemática                                                                   | (e =2,7118)                                |  |
| $\rho_{s}$     | Densidad del sólido.                                                                   | Kg/ m <sup>3</sup> ( lb/Pie <sup>3</sup> ) |  |
| $\rho_0$       | Densidad del agua.                                                                     | Kg/ m <sup>3</sup> ( lb/Pie <sup>3</sup> ) |  |

| $\rho_p$        | Densidad de la pulpa.                                    | Kg/ m <sup>3</sup> ( lb/Pie <sup>3</sup> ) |
|-----------------|----------------------------------------------------------|--------------------------------------------|
| τ <sub>B</sub>  | Esfuerzo inicial de Bingham.                             | Pa( lbf/pie <sup>2</sup> )                 |
| τ <sub>ij</sub> | Esfuerzo cortante (de cizalla).                          | Pa( lbf/pie <sup>2</sup> )                 |
| τ <sub>ii</sub> | Esfuerzo normal.                                         | Pa( lbf/pie <sup>2</sup> )                 |
| $\tau_w$        | Esfuerzo cortante evaluado en la pared del tubo.         | Pa( lbf/pie <sup>2</sup> )                 |
| τ <sub>o</sub>  | Esfuerzo cortante inicial físico del modelo de Bingham.  | Pa( lbf/pie <sup>2</sup> )                 |
| G <sub>0</sub>  | Densidad de carga superficial.                           | C/m <sup>2</sup> o mol/L                   |
| φ               | Coeficiente de corrección de las pérdidas hidráulicas en | (adimensional)                             |
|                 | flujo trifásico.                                         |                                            |